Profectus-Demo/src/features/conversion.ts

482 lines
19 KiB
TypeScript
Raw Normal View History

2022-03-03 21:39:48 -06:00
import { GenericLayer } from "game/layers";
2022-04-11 22:50:02 -05:00
import { Modifier } from "game/modifiers";
2022-03-03 21:39:48 -06:00
import Decimal, { DecimalSource } from "util/bignum";
2022-05-01 19:13:41 -05:00
import { WithRequired } from "util/common";
2022-01-13 22:25:47 -06:00
import {
Computable,
convertComputable,
2022-01-13 22:25:47 -06:00
GetComputableTypeWithDefault,
processComputable,
ProcessedComputable
2022-03-03 21:39:48 -06:00
} from "util/computed";
import { createLazyProxy } from "util/proxies";
2022-05-02 20:50:19 -05:00
import { computed, Ref, unref } from "vue";
import { OptionsFunc, Replace, setDefault } from "./feature";
2022-02-27 16:04:56 -06:00
import { Resource } from "./resources/resource";
2022-01-13 22:25:47 -06:00
2022-05-01 19:13:41 -05:00
/**
* An object that configures a {@link conversion}.
*/
2022-01-13 22:25:47 -06:00
export interface ConversionOptions {
2022-05-01 19:13:41 -05:00
/**
* The scaling function that is used to determine the rate of conversion from one {@link resource} to the other.
*/
2022-01-13 22:25:47 -06:00
scaling: ScalingFunction;
2022-05-01 19:13:41 -05:00
/**
* How much of the output resource the conversion can currently convert for.
* Typically this will be set for you in a conversion constructor.
*/
2022-01-13 22:25:47 -06:00
currentGain?: Computable<DecimalSource>;
2022-05-01 19:13:41 -05:00
/**
* The absolute amount the output resource will be changed by.
* Typically this will be set for you in a conversion constructor.
* This will differ from {@link currentGain} in the cases where the conversion isn't just adding the converted amount to the output resource.
*/
2022-04-10 15:05:49 -07:00
actualGain?: Computable<DecimalSource>;
2022-05-01 19:13:41 -05:00
/**
* The amount of the input resource currently being required in order to produce the {@link currentGain}.
* That is, if it went below this value then {@link currentGain} would decrease.
* Typically this will be set for you in a conversion constructor.
*/
2022-04-10 15:05:49 -07:00
currentAt?: Computable<DecimalSource>;
2022-05-01 19:13:41 -05:00
/**
* The amount of the input resource required to make {@link currentGain} increase.
* Typically this will be set for you in a conversion constructor.
*/
2022-01-13 22:25:47 -06:00
nextAt?: Computable<DecimalSource>;
2022-05-01 19:13:41 -05:00
/**
* The input {@link resource} for this conversion.
*/
2022-01-13 22:25:47 -06:00
baseResource: Resource;
2022-05-01 19:13:41 -05:00
/**
* The output {@link resource} for this conversion. i.e. the resource being generated.
*/
2022-01-13 22:25:47 -06:00
gainResource: Resource;
2022-05-01 19:13:41 -05:00
/**
* Whether or not to cap the amount of the output resource gained by converting at 1.
*/
2022-01-13 22:25:47 -06:00
buyMax?: Computable<boolean>;
2022-05-01 19:13:41 -05:00
/**
* Whether or not to round up the cost to generate a given amount of the output resource.
*/
2022-01-13 22:25:47 -06:00
roundUpCost?: Computable<boolean>;
2022-05-01 19:13:41 -05:00
/**
* The function that performs the actual conversion from {@link baseResource} to {@link gainResource}.
* Typically this will be set for you in a conversion constructor.
*/
2022-01-13 22:25:47 -06:00
convert?: VoidFunction;
2022-05-01 19:13:41 -05:00
/**
* An addition modifier that will be applied to the gain amounts.
* Must be reversible in order to correctly calculate {@link nextAt}.
* @see {@link createSequentialModifier} if you want to apply multiple modifiers.
*/
gainModifier?: WithRequired<Modifier, "revert">;
2022-01-13 22:25:47 -06:00
}
2022-05-01 19:13:41 -05:00
/**
* The properties that are added onto a processed {@link ConversionOptions} to create a {@link Conversion}.
*/
2022-03-08 19:40:51 -06:00
export interface BaseConversion {
2022-05-01 19:13:41 -05:00
/**
* The function that performs the actual conversion.
*/
2022-01-13 22:25:47 -06:00
convert: VoidFunction;
}
2022-05-01 19:13:41 -05:00
/**
* An object that converts one {@link resource} into another at a given rate.
*/
2022-01-13 22:25:47 -06:00
export type Conversion<T extends ConversionOptions> = Replace<
T & BaseConversion,
{
currentGain: GetComputableTypeWithDefault<T["currentGain"], Ref<DecimalSource>>;
2022-04-10 15:05:49 -07:00
actualGain: GetComputableTypeWithDefault<T["actualGain"], Ref<DecimalSource>>;
currentAt: GetComputableTypeWithDefault<T["currentAt"], Ref<DecimalSource>>;
2022-01-13 22:25:47 -06:00
nextAt: GetComputableTypeWithDefault<T["nextAt"], Ref<DecimalSource>>;
buyMax: GetComputableTypeWithDefault<T["buyMax"], true>;
roundUpCost: GetComputableTypeWithDefault<T["roundUpCost"], true>;
}
>;
2022-05-01 19:13:41 -05:00
/**
* A type that matches any {@link conversion} object.
*/
2022-01-13 22:25:47 -06:00
export type GenericConversion = Replace<
Conversion<ConversionOptions>,
{
currentGain: ProcessedComputable<DecimalSource>;
2022-04-10 15:05:49 -07:00
actualGain: ProcessedComputable<DecimalSource>;
currentAt: ProcessedComputable<DecimalSource>;
2022-01-13 22:25:47 -06:00
nextAt: ProcessedComputable<DecimalSource>;
buyMax: ProcessedComputable<boolean>;
roundUpCost: ProcessedComputable<boolean>;
}
>;
2022-05-01 19:13:41 -05:00
/**
* Lazily creates a conversion with the given options.
* You typically shouldn't use this function directly. Instead use one of the other conversion constructors, which will then call this.
* @param optionsFunc Conversion options.
* @see {@link createCumulativeConversion}.
* @see {@link createIndependentConversion}.
*/
2022-01-13 22:25:47 -06:00
export function createConversion<T extends ConversionOptions>(
optionsFunc: OptionsFunc<T, Conversion<T>, BaseConversion>
2022-01-13 22:25:47 -06:00
): Conversion<T> {
return createLazyProxy(() => {
const conversion = optionsFunc();
if (conversion.currentGain == null) {
conversion.currentGain = computed(() => {
let gain = conversion.gainModifier
? conversion.gainModifier.apply(
conversion.scaling.currentGain(conversion as GenericConversion)
)
: conversion.scaling.currentGain(conversion as GenericConversion);
gain = Decimal.floor(gain).max(0);
if (!unref(conversion.buyMax)) {
gain = gain.min(1);
}
return gain;
});
}
2022-04-10 15:05:49 -07:00
if (conversion.actualGain == null) {
conversion.actualGain = conversion.currentGain;
}
if (conversion.currentAt == null) {
conversion.currentAt = computed(() => {
let current = conversion.scaling.currentAt(conversion as GenericConversion);
if (conversion.roundUpCost) current = Decimal.ceil(current);
return current;
});
}
if (conversion.nextAt == null) {
conversion.nextAt = computed(() => {
let next = conversion.scaling.nextAt(conversion as GenericConversion);
if (conversion.roundUpCost) next = Decimal.ceil(next);
return next;
});
}
2022-01-13 22:25:47 -06:00
if (conversion.convert == null) {
conversion.convert = function () {
conversion.gainResource.value = Decimal.add(
conversion.gainResource.value,
unref((conversion as GenericConversion).currentGain)
);
// TODO just subtract cost?
conversion.baseResource.value = 0;
};
}
2022-01-13 22:25:47 -06:00
processComputable(conversion as T, "currentGain");
2022-04-10 15:05:49 -07:00
processComputable(conversion as T, "actualGain");
processComputable(conversion as T, "currentAt");
processComputable(conversion as T, "nextAt");
processComputable(conversion as T, "buyMax");
setDefault(conversion, "buyMax", true);
processComputable(conversion as T, "roundUpCost");
setDefault(conversion, "roundUpCost", true);
2022-01-13 22:25:47 -06:00
return conversion as unknown as Conversion<T>;
});
2022-01-13 22:25:47 -06:00
}
2022-05-01 19:13:41 -05:00
/**
* A collection of functions that allow a conversion to scale the amount of resources gained based on the input resource.
* This typically shouldn't be created directly. Instead use one of the scaling function constructors.
* @see {@link createLinearScaling}.
* @see {@link createPolynomialScaling}.
*/
export interface ScalingFunction {
/**
* Calculates the amount of the output resource a conversion should be able to currently produce.
* This should be based off of `conversion.baseResource.value`.
* The conversion is responsible for applying the gainModifier, so this function should be un-modified.
* It does not need to be clamped or rounded.
*/
2022-01-13 22:25:47 -06:00
currentGain: (conversion: GenericConversion) => DecimalSource;
2022-05-01 19:13:41 -05:00
/**
* Calculates the amount of the input resource that is required for the current value of `conversion.currentGain`.
* Note that `conversion.currentGain` has been modified by `conversion.gainModifier`, so you will need to revert that as appropriate.
* The conversion is responsible for rounding up the amount as appropriate.
* The returned value should not be below 0.
*/
2022-04-10 15:05:49 -07:00
currentAt: (conversion: GenericConversion) => DecimalSource;
2022-05-01 19:13:41 -05:00
/**
* Calculates the amount of the input resource that would be required for the current value of `conversion.currentGain` to increase.
* Note that `conversion.currentGain` has been modified by `conversion.gainModifier`, so you will need to revert that as appropriate.
* The conversion is responsible for rounding up the amount as appropriate.
* The returned value should not be below 0.
*/
2022-01-13 22:25:47 -06:00
nextAt: (conversion: GenericConversion) => DecimalSource;
2022-05-01 19:13:41 -05:00
}
2022-01-13 22:25:47 -06:00
2022-05-01 19:13:41 -05:00
/**
* Creates a scaling function based off the formula `(baseResource - base) * coefficient`.
* If the baseResource value is less than base then the currentGain will be 0.
* @param base The base variable in the scaling formula.
* @param coefficient The coefficient variable in the scaling formula.
* @example
* A scaling function created via `createLinearScaling(10, 0.5)` would produce the following values:
* | Base Resource | Current Gain |
* | ------------- | ------------ |
* | 10 | 1 |
* | 12 | 2 |
* | 20 | 6 |
*/
2022-01-13 22:25:47 -06:00
export function createLinearScaling(
base: Computable<DecimalSource>,
coefficient: Computable<DecimalSource>
2022-01-13 22:25:47 -06:00
): ScalingFunction {
const processedBase = convertComputable(base);
const processedCoefficient = convertComputable(coefficient);
2022-01-13 22:25:47 -06:00
return {
currentGain(conversion) {
if (Decimal.lt(conversion.baseResource.value, unref(processedBase))) {
return 0;
}
return Decimal.sub(conversion.baseResource.value, unref(processedBase))
.sub(1)
.times(unref(processedCoefficient))
.add(1);
2022-01-13 22:25:47 -06:00
},
2022-04-10 15:05:49 -07:00
currentAt(conversion) {
let current: DecimalSource = unref(conversion.currentGain);
if (conversion.gainModifier) {
current = conversion.gainModifier.revert(current);
}
current = Decimal.max(0, current);
return Decimal.sub(current, 1)
.div(unref(processedCoefficient))
.add(unref(processedBase));
2022-04-10 15:05:49 -07:00
},
2022-01-13 22:25:47 -06:00
nextAt(conversion) {
let next: DecimalSource = Decimal.add(unref(conversion.currentGain), 1);
if (conversion.gainModifier) {
next = conversion.gainModifier.revert(next);
}
next = Decimal.max(0, next);
return Decimal.sub(next, 1)
.div(unref(processedCoefficient))
.add(unref(processedBase))
.max(unref(processedBase));
2022-01-13 22:25:47 -06:00
}
};
}
2022-05-01 19:13:41 -05:00
/**
* Creates a scaling function based off the formula `(baseResource / base) ^ exponent`.
* If the baseResource value is less than base then the currentGain will be 0.
* @param base The base variable in the scaling formula.
* @param exponent The exponent variable in the scaling formula.
* @example
* A scaling function created via `createLinearScaling(10, 0.5)` would produce the following values:
* | Base Resource | Current Gain |
* | ------------- | ------------ |
* | 10 | 1 |
* | 40 | 2 |
* | 250 | 5 |
*/
export function createPolynomialScaling(
base: Computable<DecimalSource>,
exponent: Computable<DecimalSource>
2022-01-13 22:25:47 -06:00
): ScalingFunction {
const processedBase = convertComputable(base);
const processedExponent = convertComputable(exponent);
2022-01-13 22:25:47 -06:00
return {
currentGain(conversion) {
if (Decimal.lt(conversion.baseResource.value, unref(processedBase))) {
2022-05-01 19:13:41 -05:00
return 0;
}
const gain = Decimal.div(conversion.baseResource.value, unref(processedBase)).pow(
unref(processedExponent)
);
2022-01-13 22:25:47 -06:00
if (gain.isNan()) {
return new Decimal(0);
}
2022-01-13 22:25:47 -06:00
return gain;
},
2022-04-10 15:05:49 -07:00
currentAt(conversion) {
let current: DecimalSource = unref(conversion.currentGain);
if (conversion.gainModifier) {
current = conversion.gainModifier.revert(current);
}
current = Decimal.max(0, current);
return Decimal.root(current, unref(processedExponent)).times(unref(processedBase));
2022-04-10 15:05:49 -07:00
},
2022-01-13 22:25:47 -06:00
nextAt(conversion) {
let next: DecimalSource = Decimal.add(unref(conversion.currentGain), 1);
if (conversion.gainModifier) {
next = conversion.gainModifier.revert(next);
}
next = Decimal.max(0, next);
return Decimal.root(next, unref(processedExponent))
.times(unref(processedBase))
.max(unref(processedBase));
2022-01-13 22:25:47 -06:00
}
};
}
2022-05-01 19:13:41 -05:00
/**
* Creates a conversion that simply adds to the gainResource amount upon converting.
* This is similar to the behavior of "normal" layers in The Modding Tree.
* This is equivalent to just calling createConversion directly.
* @param optionsFunc Conversion options.
*/
2022-01-13 22:25:47 -06:00
export function createCumulativeConversion<S extends ConversionOptions>(
optionsFunc: OptionsFunc<S, Conversion<S>>
2022-01-13 22:25:47 -06:00
): Conversion<S> {
return createConversion(optionsFunc);
2022-01-13 22:25:47 -06:00
}
2022-05-01 19:13:41 -05:00
/**
* Creates a conversion that will replace the gainResource amount with the new amount upon converting.
* This is similar to the behavior of "static" layers in The Modding Tree.
* @param optionsFunc Converison options.
*/
2022-01-13 22:25:47 -06:00
export function createIndependentConversion<S extends ConversionOptions>(
optionsFunc: OptionsFunc<S, Conversion<S>>
2022-01-13 22:25:47 -06:00
): Conversion<S> {
return createConversion(() => {
const conversion: S = optionsFunc();
setDefault(conversion, "buyMax", false);
if (conversion.currentGain == null) {
conversion.currentGain = computed(() => {
let gain = conversion.gainModifier
? conversion.gainModifier.apply(
conversion.scaling.currentGain(conversion as GenericConversion)
)
: conversion.scaling.currentGain(conversion as GenericConversion);
gain = Decimal.floor(gain).max(conversion.gainResource.value);
if (!unref(conversion.buyMax)) {
gain = gain.min(Decimal.add(conversion.gainResource.value, 1));
}
return gain;
});
}
2022-04-10 15:05:49 -07:00
if (conversion.actualGain == null) {
conversion.actualGain = computed(() => {
let gain = Decimal.sub(
conversion.scaling.currentGain(conversion as GenericConversion),
conversion.gainResource.value
).max(0);
if (!unref(conversion.buyMax)) {
gain = gain.min(1);
}
return gain;
});
}
setDefault(conversion, "convert", function () {
conversion.gainResource.value = conversion.gainModifier
? conversion.gainModifier.apply(
unref((conversion as GenericConversion).currentGain)
)
: unref((conversion as GenericConversion).currentGain);
// TODO just subtract cost?
// Maybe by adding a cost function to scaling and nextAt just calls the cost function
// with 1 + currentGain
conversion.baseResource.value = 0;
});
2022-01-13 22:25:47 -06:00
return conversion;
2022-01-13 22:25:47 -06:00
});
}
2022-05-01 19:13:41 -05:00
/**
* This will automatically increase the value of conversion.gainResource without lowering the value of the input resource.
* It will by default perform 100% of a conversion's currentGain per second.
* If you use a ref for the rate you can set it's value to 0 when passive generation should be disabled.
* @param layer The layer this passive generation will be associated with.
* @param conversion The conversion that will determine how much generation there is.
* @param rate A multiplier to multiply against the conversion's currentGain.
*/
2022-01-13 22:25:47 -06:00
export function setupPassiveGeneration(
layer: GenericLayer,
conversion: GenericConversion,
rate: Computable<DecimalSource> = 1
2022-01-13 22:25:47 -06:00
): void {
const processedRate = convertComputable(rate);
layer.on("preUpdate", diff => {
const currRate = unref(processedRate);
2022-01-13 22:25:47 -06:00
if (Decimal.neq(currRate, 0)) {
conversion.gainResource.value = Decimal.add(
conversion.gainResource.value,
2022-01-13 22:25:47 -06:00
Decimal.times(currRate, diff).times(unref(conversion.currentGain))
);
}
});
}
2022-05-01 19:13:41 -05:00
/**
* Given a value, this function finds the amount above a certain value and raises it to a power.
* If the power is <1, this will effectively make the value scale slower after the cap.
* @param value The raw value.
* @param cap The value after which the softcap should be applied.
* @param power The power to raise value above the cap to.
* @example
* A softcap added via `addSoftcap(scaling, 100, 0.5)` would produce the following values:
* | Raw Value | Softcapped Value |
* | --------- | ---------------- |
* | 1 | 1 |
* | 100 | 100 |
* | 125 | 105 |
* | 200 | 110 |
*/
export function softcap(
value: DecimalSource,
cap: DecimalSource,
power: DecimalSource = 0.5
): DecimalSource {
if (Decimal.lte(value, cap)) {
return value;
} else {
return Decimal.pow(value, power).times(Decimal.pow(cap, Decimal.sub(1, power)));
}
}
2022-05-01 19:13:41 -05:00
/**
* Creates a scaling function based off an existing scaling function, with a softcap applied to it.
* The softcap will take any value above a certain value and raise it to a power.
* If the power is <1, this will effectively make the value scale slower after the cap.
* @param scaling The raw scaling function.
* @param cap The value after which the softcap should be applied.
* @param power The power to raise value about the cap to.
* @see {@link softcap}.
*/
export function addSoftcap(
scaling: ScalingFunction,
cap: ProcessedComputable<DecimalSource>,
power: ProcessedComputable<DecimalSource> = 0.5
): ScalingFunction {
return {
...scaling,
currentGain: conversion =>
softcap(scaling.currentGain(conversion), unref(cap), unref(power))
};
}
2022-05-01 19:13:41 -05:00
/**
* Creates a scaling function off an existing function, with a hardcap applied to it.
* The harcap will ensure that the currentGain will stop at a given cap.
* @param scaling The raw scaling function.
* @param cap The maximum value the scaling function can output.
*/
export function addHardcap(
scaling: ScalingFunction,
cap: ProcessedComputable<DecimalSource>
): ScalingFunction {
return {
...scaling,
currentGain: conversion => Decimal.min(scaling.currentGain(conversion), unref(cap))
};
}