/* eslint-disable @typescript-eslint/no-this-alias */ /* eslint-disable @typescript-eslint/no-loss-of-precision */ import { LRUCache } from "../lib/lru-cache"; export type CompareResult = -1 | 0 | 1; const MAX_SIGNIFICANT_DIGITS = 17; //Maximum number of digits of precision to assume in Number const EXP_LIMIT = 9e15; //If we're ABOVE this value, increase a layer. (9e15 is close to the largest integer that can fit in a Number.) const LAYER_DOWN: number = Math.log10(9e15); const FIRST_NEG_LAYER = 1 / 9e15; //At layer 0, smaller non-zero numbers than this become layer 1 numbers with negative mag. After that the pattern continues as normal. const NUMBER_EXP_MAX = 308; //The largest exponent that can appear in a Number, though not all mantissas are valid here. const NUMBER_EXP_MIN = -324; //The smallest exponent that can appear in a Number, though not all mantissas are valid here. const MAX_ES_IN_A_ROW = 5; //For default toString behaviour, when to swap from eee... to (e^n) syntax. const DEFAULT_FROM_STRING_CACHE_SIZE = (1 << 10) - 1; // The default size of the LRU cache used to cache Decimal.fromString. const IGNORE_COMMAS = true; const COMMAS_ARE_DECIMAL_POINTS = false; const powerOf10 = (function () { // We need this lookup table because Math.pow(10, exponent) // when exponent's absolute value is large is slightly inaccurate. // You can fix it with the power of math... or just make a lookup table. // Faster AND simpler const powersOf10: number[] = []; for (let i = NUMBER_EXP_MIN + 1; i <= NUMBER_EXP_MAX; i++) { powersOf10.push(Number("1e" + i)); } const indexOf0InPowersOf10 = 323; return function (power: number) { return powersOf10[power + indexOf0InPowersOf10]; }; })(); //tetration/slog to real height stuff //background info and tables of values for critical functions taken here: https://github.com/Patashu/break_eternity.js/issues/22 const critical_headers = [2, Math.E, 3, 4, 5, 6, 7, 8, 9, 10]; const critical_tetr_values = [ [ // Base 2 (using http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html ) 1, 1.0891180521811202527, 1.1789767925673958433, 1.2701455431742086633, 1.3632090180450091941, 1.4587818160364217007, 1.5575237916251418333, 1.6601571006859253673, 1.7674858188369780435, 1.8804192098842727359, 2 ], [ // Base E (using http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html ) 1, //0.0 1.1121114330934078681, //0.1 1.2310389249316089299, //0.2 1.3583836963111376089, //0.3 1.4960519303993531879, //0.4 1.646354233751194581, //0.5 1.8121385357018724464, //0.6 1.9969713246183068478, //0.7 2.205389554552754433, //0.8 2.4432574483385252544, //0.9 Math.E //1.0 ], [ // Base 3 1, 1.1187738849693603, 1.2464963939368214, 1.38527004705667, 1.5376664685821402, 1.7068895236551784, 1.897001227148399, 2.1132403089001035, 2.362480153784171, 2.6539010333870774, 3 ], [ // Base 4 1, 1.1367350847096405, 1.2889510672956703, 1.4606478703324786, 1.6570295196661111, 1.8850062585672889, 2.1539465047453485, 2.476829779693097, 2.872061932789197, 3.3664204535587183, 4 ], [ // Base 5 1, 1.1494592900767588, 1.319708228183931, 1.5166291280087583, 1.748171114438024, 2.0253263297298045, 2.3636668498288547, 2.7858359149579424, 3.3257226212448145, 4.035730287722532, 5 ], [ // Base 6 1, 1.159225940787673, 1.343712473580932, 1.5611293155111927, 1.8221199554561318, 2.14183924486326, 2.542468319282638, 3.0574682501653316, 3.7390572020926873, 4.6719550537360774, 6 ], [ // Base 7 1, 1.1670905356972596, 1.3632807444991446, 1.5979222279405536, 1.8842640123816674, 2.2416069644878687, 2.69893426559423, 3.3012632110403577, 4.121250340630164, 5.281493033448316, 7 ], [ // Base 8 1, 1.1736630594087796, 1.379783782386201, 1.6292821855668218, 1.9378971836180754, 2.3289975651071977, 2.8384347394720835, 3.5232708454565906, 4.478242031114584, 5.868592169644505, 8 ], [ // Base 9 1, 1.1793017514670474, 1.394054150657457, 1.65664127441059, 1.985170999970283, 2.4069682290577457, 2.9647310119960752, 3.7278665320924946, 4.814462547283592, 6.436522247411611, 9 ], [ // Base 10 (using http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html ) 1, 1.1840100246247336579, 1.4061375836156954169, 1.6802272208863963918, 2.026757028388618927, 2.477005606344964758, 3.0805252717554819987, 3.9191964192627283911, 5.135152840833186423, 6.9899611795347148455, 10 ] ]; const critical_slog_values = [ [ // Base 2 -1, -0.9194161097107025, -0.8335625019330468, -0.7425599821143978, -0.6466611521029437, -0.5462617907227869, -0.4419033816638769, -0.3342645487554494, -0.224140440909962, -0.11241087890006762, 0 ], [ // Base E -1, //0.0 -0.90603157029014, //0.1 -0.80786507256596, //0.2 -0.7064666939634, //0.3 -0.60294836853664, //0.4 -0.49849837513117, //0.5 -0.39430303318768, //0.6 -0.29147201034755, //0.7 -0.19097820800866, //0.8 -0.09361896280296, //0.9 0 //1.0 ], [ // Base 3 -1, -0.9021579584316141, -0.8005762598234203, -0.6964780623319391, -0.5911906810998454, -0.486050182576545, -0.3823089430815083, -0.28106046722897615, -0.1831906535795894, -0.08935809204418144, 0 ], [ // Base 4 -1, -0.8917227442365535, -0.781258746326964, -0.6705130326902455, -0.5612813129406509, -0.4551067709033134, -0.35319256652135966, -0.2563741554088552, -0.1651412821106526, -0.0796919581982668, 0 ], [ // Base 5 -1, -0.8843387974366064, -0.7678744063886243, -0.6529563724510552, -0.5415870994657841, -0.4352842206588936, -0.33504449124791424, -0.24138853420685147, -0.15445285440944467, -0.07409659641336663, 0 ], [ // Base 6 -1, -0.8786709358426346, -0.7577735191184886, -0.6399546189952064, -0.527284921869926, -0.4211627631006314, -0.3223479611761232, -0.23107655627789858, -0.1472057700818259, -0.07035171210706326, 0 ], [ // Base 7 -1, -0.8740862815291583, -0.7497032990976209, -0.6297119746181752, -0.5161838335958787, -0.41036238255751956, -0.31277212146489963, -0.2233976621705518, -0.1418697367979619, -0.06762117662323441, 0 ], [ // Base 8 -1, -0.8702632331800649, -0.7430366914122081, -0.6213373075161548, -0.5072025698095242, -0.40171437727184167, -0.30517930701410456, -0.21736343968190863, -0.137710238299109, -0.06550774483471955, 0 ], [ // Base 9 -1, -0.8670016295947213, -0.7373984232432306, -0.6143173985094293, -0.49973884395492807, -0.394584953527678, -0.2989649949848695, -0.21245647317021688, -0.13434688362382652, -0.0638072667348083, 0 ], [ // Base 10 -1, -0.8641642839543857, -0.732534623168535, -0.6083127477059322, -0.4934049257184696, -0.3885773075899922, -0.29376029055315767, -0.2083678561173622, -0.13155653399373268, -0.062401588652553186, 0 ] ]; let D = function D(value: DecimalSource): Readonly { return Decimal.fromValue_noAlloc(value); }; let FC = function (sign: number, layer: number, mag: number) { return Decimal.fromComponents(sign, layer, mag); }; let FC_NN = function FC_NN(sign: number, layer: number, mag: number) { return Decimal.fromComponents_noNormalize(sign, layer, mag); }; // eslint-disable-next-line @typescript-eslint/no-unused-vars let ME = function ME(mantissa: number, exponent: number) { return Decimal.fromMantissaExponent(mantissa, exponent); }; // eslint-disable-next-line @typescript-eslint/no-unused-vars let ME_NN = function ME_NN(mantissa: number, exponent: number) { return Decimal.fromMantissaExponent_noNormalize(mantissa, exponent); }; const decimalPlaces = function decimalPlaces(value: number, places: number): number { const len = places + 1; const numDigits = Math.ceil(Math.log10(Math.abs(value))); const rounded = Math.round(value * Math.pow(10, len - numDigits)) * Math.pow(10, numDigits - len); return parseFloat(rounded.toFixed(Math.max(len - numDigits, 0))); }; const f_maglog10 = function (n: number) { return Math.sign(n) * Math.log10(Math.abs(n)); }; //from HyperCalc source code const f_gamma = function (n: number) { if (!isFinite(n)) { return n; } if (n < -50) { if (n === Math.trunc(n)) { return Number.NEGATIVE_INFINITY; } return 0; } let scal1 = 1; while (n < 10) { scal1 = scal1 * n; ++n; } n -= 1; let l = 0.9189385332046727; //0.5*Math.log(2*Math.PI) l = l + (n + 0.5) * Math.log(n); l = l - n; const n2 = n * n; let np = n; l = l + 1 / (12 * np); np = np * n2; l = l + 1 / (360 * np); np = np * n2; l = l + 1 / (1260 * np); np = np * n2; l = l + 1 / (1680 * np); np = np * n2; l = l + 1 / (1188 * np); np = np * n2; l = l + 691 / (360360 * np); np = np * n2; l = l + 7 / (1092 * np); np = np * n2; l = l + 3617 / (122400 * np); return Math.exp(l) / scal1; }; const _twopi = 6.2831853071795864769252842; // 2*pi const _EXPN1 = 0.36787944117144232159553; // exp(-1) const OMEGA = 0.56714329040978387299997; // W(1, 0) //from https://math.stackexchange.com/a/465183 // The evaluation can become inaccurate very close to the branch point const f_lambertw = function (z: number, tol = 1e-10): number { let w; let wn; if (!Number.isFinite(z)) { return z; } if (z === 0) { return z; } if (z === 1) { return OMEGA; } if (z < 10) { w = 0; } else { w = Math.log(z) - Math.log(Math.log(z)); } for (let i = 0; i < 100; ++i) { wn = (z * Math.exp(-w) + w * w) / (w + 1); if (Math.abs(wn - w) < tol * Math.abs(wn)) { return wn; } else { w = wn; } } throw Error(`Iteration failed to converge: ${z.toString()}`); //return Number.NaN; }; //from https://github.com/scipy/scipy/blob/8dba340293fe20e62e173bdf2c10ae208286692f/scipy/special/lambertw.pxd // The evaluation can become inaccurate very close to the branch point // at ``-1/e``. In some corner cases, `lambertw` might currently // fail to converge, or can end up on the wrong branch. function d_lambertw(z: Decimal, tol = 1e-10): Decimal { let w; let ew, wewz, wn; if (!Number.isFinite(z.mag)) { return z; } if (z.eq(Decimal.dZero)) { return z; } if (z.eq(Decimal.dOne)) { //Split out this case because the asymptotic series blows up return Decimal.fromNumber(OMEGA); } //Get an initial guess for Halley's method w = Decimal.ln(z); //Halley's method; see 5.9 in [1] for (let i = 0; i < 100; ++i) { ew = w.neg().exp(); wewz = w.sub(z.mul(ew)); wn = w.sub(wewz.div(w.add(1).sub(w.add(2).mul(wewz).div(Decimal.mul(2, w).add(2))))); if (Decimal.abs(wn.sub(w)).lt(Decimal.abs(wn).mul(tol))) { return wn; } else { w = wn; } } throw Error(`Iteration failed to converge: ${z.toString()}`); //return Decimal.dNaN; } export type DecimalSource = Decimal | number | string; /** * The Decimal's value is simply mantissa * 10^exponent. */ export default class Decimal { public static readonly dZero = FC_NN(0, 0, 0); public static readonly dOne = FC_NN(1, 0, 1); public static readonly dNegOne = FC_NN(-1, 0, 1); public static readonly dTwo = FC_NN(1, 0, 2); public static readonly dTen = FC_NN(1, 0, 10); public static readonly dNaN = FC_NN(Number.NaN, Number.NaN, Number.NaN); public static readonly dInf = FC_NN(1, Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY); public static readonly dNegInf = FC_NN(-1, Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY); public static readonly dNumberMax = FC(1, 0, Number.MAX_VALUE); public static readonly dNumberMin = FC(1, 0, Number.MIN_VALUE); private static fromStringCache = new LRUCache(DEFAULT_FROM_STRING_CACHE_SIZE); public sign = 0; public mag = 0; public layer = 0; constructor(value?: DecimalSource) { if (value instanceof Decimal) { this.fromDecimal(value); } else if (typeof value === "number") { this.fromNumber(value); } else if (typeof value === "string") { this.fromString(value); } } get m(): number { if (this.sign === 0) { return 0; } else if (this.layer === 0) { const exp = Math.floor(Math.log10(this.mag)); //handle special case 5e-324 let man; if (this.mag === 5e-324) { man = 5; } else { man = this.mag / powerOf10(exp); } return this.sign * man; } else if (this.layer === 1) { const residue = this.mag - Math.floor(this.mag); return this.sign * Math.pow(10, residue); } else { //mantissa stops being relevant past 1e9e15 / ee15.954 return this.sign; } } set m(value: number) { if (this.layer <= 2) { this.fromMantissaExponent(value, this.e); } else { //don't even pretend mantissa is meaningful this.sign = Math.sign(value); if (this.sign === 0) { this.layer = 0; this.exponent = 0; } } } get e(): number { if (this.sign === 0) { return 0; } else if (this.layer === 0) { return Math.floor(Math.log10(this.mag)); } else if (this.layer === 1) { return Math.floor(this.mag); } else if (this.layer === 2) { return Math.floor(Math.sign(this.mag) * Math.pow(10, Math.abs(this.mag))); } else { return this.mag * Number.POSITIVE_INFINITY; } } set e(value: number) { this.fromMantissaExponent(this.m, value); } get s(): number { return this.sign; } set s(value: number) { if (value === 0) { this.sign = 0; this.layer = 0; this.mag = 0; } else { this.sign = value; } } // Object.defineProperty(Decimal.prototype, "mantissa", { get mantissa(): number { return this.m; } set mantissa(value: number) { this.m = value; } get exponent(): number { return this.e; } set exponent(value: number) { this.e = value; } public static fromComponents(sign: number, layer: number, mag: number): Decimal { return new Decimal().fromComponents(sign, layer, mag); } public static fromComponents_noNormalize(sign: number, layer: number, mag: number): Decimal { return new Decimal().fromComponents_noNormalize(sign, layer, mag); } public static fromMantissaExponent(mantissa: number, exponent: number): Decimal { return new Decimal().fromMantissaExponent(mantissa, exponent); } public static fromMantissaExponent_noNormalize(mantissa: number, exponent: number): Decimal { return new Decimal().fromMantissaExponent_noNormalize(mantissa, exponent); } public static fromDecimal(value: Decimal): Decimal { return new Decimal().fromDecimal(value); } public static fromNumber(value: number): Decimal { return new Decimal().fromNumber(value); } public static fromString(value: string): Decimal { return new Decimal().fromString(value); } public static fromValue(value: DecimalSource): Decimal { return new Decimal().fromValue(value); } /** * Converts a DecimalSource to a Decimal, without constructing a new Decimal * if the provided value is already a Decimal. * * As the return value could be the provided value itself, this function * returns a read-only Decimal to prevent accidental mutations of the value. * Use `new Decimal(value)` to explicitly create a writeable copy if mutation * is required. */ public static fromValue_noAlloc(value: DecimalSource): Readonly { if (value instanceof Decimal) { return value; } else if (typeof value === "string") { const cached = Decimal.fromStringCache.get(value); if (cached !== undefined) { return cached; } return Decimal.fromString(value); } else if (typeof value === "number") { return Decimal.fromNumber(value); } else { // This should never happen... but some users like Prestige Tree Rewritten // pass undefined values in as DecimalSources, so we should handle this // case to not break them. return Decimal.dZero; } } public static abs(value: DecimalSource): Decimal { return D(value).abs(); } public static neg(value: DecimalSource): Decimal { return D(value).neg(); } public static negate(value: DecimalSource): Decimal { return D(value).neg(); } public static negated(value: DecimalSource): Decimal { return D(value).neg(); } public static sign(value: DecimalSource): number { return D(value).sign; } public static sgn(value: DecimalSource): number { return D(value).sign; } public static round(value: DecimalSource): Decimal { return D(value).round(); } public static floor(value: DecimalSource): Decimal { return D(value).floor(); } public static ceil(value: DecimalSource): Decimal { return D(value).ceil(); } public static trunc(value: DecimalSource): Decimal { return D(value).trunc(); } public static add(value: DecimalSource, other: DecimalSource): Decimal { return D(value).add(other); } public static plus(value: DecimalSource, other: DecimalSource): Decimal { return D(value).add(other); } public static sub(value: DecimalSource, other: DecimalSource): Decimal { return D(value).sub(other); } public static subtract(value: DecimalSource, other: DecimalSource): Decimal { return D(value).sub(other); } public static minus(value: DecimalSource, other: DecimalSource): Decimal { return D(value).sub(other); } public static mul(value: DecimalSource, other: DecimalSource): Decimal { return D(value).mul(other); } public static multiply(value: DecimalSource, other: DecimalSource): Decimal { return D(value).mul(other); } public static times(value: DecimalSource, other: DecimalSource): Decimal { return D(value).mul(other); } public static div(value: DecimalSource, other: DecimalSource): Decimal { return D(value).div(other); } public static divide(value: DecimalSource, other: DecimalSource): Decimal { return D(value).div(other); } public static recip(value: DecimalSource): Decimal { return D(value).recip(); } public static reciprocal(value: DecimalSource): Decimal { return D(value).recip(); } public static reciprocate(value: DecimalSource): Decimal { return D(value).reciprocate(); } public static cmp(value: DecimalSource, other: DecimalSource): CompareResult { return D(value).cmp(other); } public static cmpabs(value: DecimalSource, other: DecimalSource): CompareResult { return D(value).cmpabs(other); } public static compare(value: DecimalSource, other: DecimalSource): CompareResult { return D(value).cmp(other); } public static isNaN(value: DecimalSource): boolean { value = D(value); return isNaN(value.sign) || isNaN(value.layer) || isNaN(value.mag); } public static isFinite(value: DecimalSource): boolean { value = D(value); return isFinite(value.sign) && isFinite(value.layer) && isFinite(value.mag); } public static eq(value: DecimalSource, other: DecimalSource): boolean { return D(value).eq(other); } public static equals(value: DecimalSource, other: DecimalSource): boolean { return D(value).eq(other); } public static neq(value: DecimalSource, other: DecimalSource): boolean { return D(value).neq(other); } public static notEquals(value: DecimalSource, other: DecimalSource): boolean { return D(value).notEquals(other); } public static lt(value: DecimalSource, other: DecimalSource): boolean { return D(value).lt(other); } public static lte(value: DecimalSource, other: DecimalSource): boolean { return D(value).lte(other); } public static gt(value: DecimalSource, other: DecimalSource): boolean { return D(value).gt(other); } public static gte(value: DecimalSource, other: DecimalSource): boolean { return D(value).gte(other); } public static max(value: DecimalSource, other: DecimalSource): Decimal { return D(value).max(other); } public static min(value: DecimalSource, other: DecimalSource): Decimal { return D(value).min(other); } public static minabs(value: DecimalSource, other: DecimalSource): Decimal { return D(value).minabs(other); } public static maxabs(value: DecimalSource, other: DecimalSource): Decimal { return D(value).maxabs(other); } public static clamp(value: DecimalSource, min: DecimalSource, max: DecimalSource): Decimal { return D(value).clamp(min, max); } public static clampMin(value: DecimalSource, min: DecimalSource): Decimal { return D(value).clampMin(min); } public static clampMax(value: DecimalSource, max: DecimalSource): Decimal { return D(value).clampMax(max); } public static cmp_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): CompareResult { return D(value).cmp_tolerance(other, tolerance); } public static compare_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): CompareResult { return D(value).cmp_tolerance(other, tolerance); } public static eq_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).eq_tolerance(other, tolerance); } public static equals_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).eq_tolerance(other, tolerance); } public static neq_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).neq_tolerance(other, tolerance); } public static notEquals_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).notEquals_tolerance(other, tolerance); } public static lt_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).lt_tolerance(other, tolerance); } public static lte_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).lte_tolerance(other, tolerance); } public static gt_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).gt_tolerance(other, tolerance); } public static gte_tolerance( value: DecimalSource, other: DecimalSource, tolerance: number ): boolean { return D(value).gte_tolerance(other, tolerance); } public static pLog10(value: DecimalSource): Decimal { return D(value).pLog10(); } public static absLog10(value: DecimalSource): Decimal { return D(value).absLog10(); } public static log10(value: DecimalSource): Decimal { return D(value).log10(); } public static log(value: DecimalSource, base: DecimalSource): Decimal { return D(value).log(base); } public static log2(value: DecimalSource): Decimal { return D(value).log2(); } public static ln(value: DecimalSource): Decimal { return D(value).ln(); } public static logarithm(value: DecimalSource, base: DecimalSource): Decimal { return D(value).logarithm(base); } public static pow(value: DecimalSource, other: DecimalSource): Decimal { return D(value).pow(other); } public static pow10(value: DecimalSource): Decimal { return D(value).pow10(); } public static root(value: DecimalSource, other: DecimalSource): Decimal { return D(value).root(other); } public static factorial(value: DecimalSource, _other?: never): Decimal { return D(value).factorial(); } public static gamma(value: DecimalSource, _other?: never): Decimal { return D(value).gamma(); } public static lngamma(value: DecimalSource, _other?: never): Decimal { return D(value).lngamma(); } public static exp(value: DecimalSource): Decimal { return D(value).exp(); } public static sqr(value: DecimalSource): Decimal { return D(value).sqr(); } public static sqrt(value: DecimalSource): Decimal { return D(value).sqrt(); } public static cube(value: DecimalSource): Decimal { return D(value).cube(); } public static cbrt(value: DecimalSource): Decimal { return D(value).cbrt(); } public static tetrate( value: DecimalSource, height = 2, payload: DecimalSource = FC_NN(1, 0, 1) ): Decimal { return D(value).tetrate(height, payload); } public static iteratedexp(value: DecimalSource, height = 2, payload = FC_NN(1, 0, 1)): Decimal { return D(value).iteratedexp(height, payload); } public static iteratedlog(value: DecimalSource, base: DecimalSource = 10, times = 1): Decimal { return D(value).iteratedlog(base, times); } public static layeradd10(value: DecimalSource, diff: DecimalSource): Decimal { return D(value).layeradd10(diff); } public static layeradd(value: DecimalSource, diff: number, base = 10): Decimal { return D(value).layeradd(diff, base); } public static slog(value: DecimalSource, base = 10): Decimal { return D(value).slog(base); } public static lambertw(value: DecimalSource): Decimal { return D(value).lambertw(); } public static ssqrt(value: DecimalSource): Decimal { return D(value).ssqrt(); } public static pentate( value: DecimalSource, height = 2, payload: DecimalSource = FC_NN(1, 0, 1) ): Decimal { return D(value).pentate(height, payload); } /** * If you're willing to spend 'resourcesAvailable' and want to buy something * with exponentially increasing cost each purchase (start at priceStart, * multiply by priceRatio, already own currentOwned), how much of it can you buy? * Adapted from Trimps source code. */ public static affordGeometricSeries( resourcesAvailable: DecimalSource, priceStart: DecimalSource, priceRatio: DecimalSource, currentOwned: DecimalSource ): Decimal { return this.affordGeometricSeries_core( D(resourcesAvailable), D(priceStart), D(priceRatio), currentOwned ); } /** * How much resource would it cost to buy (numItems) items if you already have currentOwned, * the initial price is priceStart and it multiplies by priceRatio each purchase? */ public static sumGeometricSeries( numItems: DecimalSource, priceStart: DecimalSource, priceRatio: DecimalSource, currentOwned: DecimalSource ): Decimal { return this.sumGeometricSeries_core(numItems, D(priceStart), D(priceRatio), currentOwned); } /** * If you're willing to spend 'resourcesAvailable' and want to buy something with additively * increasing cost each purchase (start at priceStart, add by priceAdd, already own currentOwned), * how much of it can you buy? */ public static affordArithmeticSeries( resourcesAvailable: DecimalSource, priceStart: DecimalSource, priceAdd: DecimalSource, currentOwned: DecimalSource ): Decimal { return this.affordArithmeticSeries_core( D(resourcesAvailable), D(priceStart), D(priceAdd), D(currentOwned) ); } /** * How much resource would it cost to buy (numItems) items if you already have currentOwned, * the initial price is priceStart and it adds priceAdd each purchase? * Adapted from http://www.mathwords.com/a/arithmetic_series.htm */ public static sumArithmeticSeries( numItems: DecimalSource, priceStart: DecimalSource, priceAdd: DecimalSource, currentOwned: DecimalSource ): Decimal { return this.sumArithmeticSeries_core( D(numItems), D(priceStart), D(priceAdd), D(currentOwned) ); } /** * When comparing two purchases that cost (resource) and increase your resource/sec by (deltaRpS), * the lowest efficiency score is the better one to purchase. * From Frozen Cookies: * http://cookieclicker.wikia.com/wiki/Frozen_Cookies_(JavaScript_Add-on)#Efficiency.3F_What.27s_that.3F */ public static efficiencyOfPurchase( cost: DecimalSource, currentRpS: DecimalSource, deltaRpS: DecimalSource ): Decimal { return this.efficiencyOfPurchase_core(D(cost), D(currentRpS), D(deltaRpS)); } public static randomDecimalForTesting(maxLayers: number): Decimal { // NOTE: This doesn't follow any kind of sane random distribution, so use this for testing purposes only. //5% of the time, return 0 if (Math.random() * 20 < 1) { return FC_NN(0, 0, 0); } const randomsign = Math.random() > 0.5 ? 1 : -1; //5% of the time, return 1 or -1 if (Math.random() * 20 < 1) { return FC_NN(randomsign, 0, 1); } //pick a random layer const layer = Math.floor(Math.random() * (maxLayers + 1)); let randomexp = layer === 0 ? Math.random() * 616 - 308 : Math.random() * 16; //10% of the time, make it a simple power of 10 if (Math.random() > 0.9) { randomexp = Math.trunc(randomexp); } let randommag = Math.pow(10, randomexp); //10% of the time, trunc mag if (Math.random() > 0.9) { randommag = Math.trunc(randommag); } return FC(randomsign, layer, randommag); } public static affordGeometricSeries_core( resourcesAvailable: Decimal, priceStart: Decimal, priceRatio: Decimal, currentOwned: DecimalSource ): Decimal { const actualStart = priceStart.mul(priceRatio.pow(currentOwned)); return Decimal.floor( resourcesAvailable .div(actualStart) .mul(priceRatio.sub(1)) .add(1) .log10() .div(priceRatio.log10()) ); } public static sumGeometricSeries_core( numItems: DecimalSource, priceStart: Decimal, priceRatio: Decimal, currentOwned: DecimalSource ): Decimal { return priceStart .mul(priceRatio.pow(currentOwned)) .mul(Decimal.sub(1, priceRatio.pow(numItems))) .div(Decimal.sub(1, priceRatio)); } public static affordArithmeticSeries_core( resourcesAvailable: Decimal, priceStart: Decimal, priceAdd: Decimal, currentOwned: Decimal ): Decimal { // n = (-(a-d/2) + sqrt((a-d/2)^2+2dS))/d // where a is actualStart, d is priceAdd and S is resourcesAvailable // then floor it and you're done! const actualStart = priceStart.add(currentOwned.mul(priceAdd)); const b = actualStart.sub(priceAdd.div(2)); const b2 = b.pow(2); return b .neg() .add(b2.add(priceAdd.mul(resourcesAvailable).mul(2)).sqrt()) .div(priceAdd) .floor(); } public static sumArithmeticSeries_core( numItems: Decimal, priceStart: Decimal, priceAdd: Decimal, currentOwned: Decimal ): Decimal { const actualStart = priceStart.add(currentOwned.mul(priceAdd)); // (n/2)*(2*a+(n-1)*d) return numItems.div(2).mul(actualStart.mul(2).plus(numItems.sub(1).mul(priceAdd))); } public static efficiencyOfPurchase_core( cost: Decimal, currentRpS: Decimal, deltaRpS: Decimal ): Decimal { return cost.div(currentRpS).add(cost.div(deltaRpS)); } public normalize(): this { /* PSEUDOCODE: Whenever we are partially 0 (sign is 0 or mag and layer is 0), make it fully 0. Whenever we are at or hit layer 0, extract sign from negative mag. If layer === 0 and mag < FIRST_NEG_LAYER (1/9e15), shift to 'first negative layer' (add layer, log10 mag). While abs(mag) > EXP_LIMIT (9e15), layer += 1, mag = maglog10(mag). While abs(mag) < LAYER_DOWN (15.954) and layer > 0, layer -= 1, mag = pow(10, mag). When we're done, all of the following should be true OR one of the numbers is not IsFinite OR layer is not IsInteger (error state): Any 0 is totally zero (0, 0, 0). Anything layer 0 has mag 0 OR mag > 1/9e15 and < 9e15. Anything layer 1 or higher has abs(mag) >= 15.954 and < 9e15. We will assume in calculations that all Decimals are either erroneous or satisfy these criteria. (Otherwise: Garbage in, garbage out.) */ if (this.sign === 0 || (this.mag === 0 && this.layer === 0)) { this.sign = 0; this.mag = 0; this.layer = 0; return this; } if (this.layer === 0 && this.mag < 0) { //extract sign from negative mag at layer 0 this.mag = -this.mag; this.sign = -this.sign; } //Handle shifting from layer 0 to negative layers. if (this.layer === 0 && this.mag < FIRST_NEG_LAYER) { this.layer += 1; this.mag = Math.log10(this.mag); return this; } let absmag = Math.abs(this.mag); let signmag = Math.sign(this.mag); if (absmag >= EXP_LIMIT) { this.layer += 1; this.mag = signmag * Math.log10(absmag); return this; } else { while (absmag < LAYER_DOWN && this.layer > 0) { this.layer -= 1; if (this.layer === 0) { this.mag = Math.pow(10, this.mag); } else { this.mag = signmag * Math.pow(10, absmag); absmag = Math.abs(this.mag); signmag = Math.sign(this.mag); } } if (this.layer === 0) { if (this.mag < 0) { //extract sign from negative mag at layer 0 this.mag = -this.mag; this.sign = -this.sign; } else if (this.mag === 0) { //excessive rounding can give us all zeroes this.sign = 0; } } } return this; } public fromComponents(sign: number, layer: number, mag: number): this { this.sign = sign; this.layer = layer; this.mag = mag; this.normalize(); return this; } public fromComponents_noNormalize(sign: number, layer: number, mag: number): this { this.sign = sign; this.layer = layer; this.mag = mag; return this; } public fromMantissaExponent(mantissa: number, exponent: number): this { this.layer = 1; this.sign = Math.sign(mantissa); mantissa = Math.abs(mantissa); this.mag = exponent + Math.log10(mantissa); this.normalize(); return this; } public fromMantissaExponent_noNormalize(mantissa: number, exponent: number): this { //The idea of 'normalizing' a break_infinity.js style Decimal doesn't really apply. So just do the same thing. this.fromMantissaExponent(mantissa, exponent); return this; } public fromDecimal(value: Decimal): this { this.sign = value.sign; this.layer = value.layer; this.mag = value.mag; return this; } public fromNumber(value: number): this { this.mag = Math.abs(value); this.sign = Math.sign(value); this.layer = 0; this.normalize(); return this; } public fromString(value: string): Decimal { const originalValue = value; const cached = Decimal.fromStringCache.get(originalValue); if (cached !== undefined) { return this.fromDecimal(cached); } if (IGNORE_COMMAS) { value = value.replace(",", ""); } else if (COMMAS_ARE_DECIMAL_POINTS) { value = value.replace(",", "."); } //Handle x^^^y format. const pentationparts = value.split("^^^"); if (pentationparts.length === 2) { const base = parseFloat(pentationparts[0]); const height = parseFloat(pentationparts[1]); const heightparts = pentationparts[1].split(";"); let payload = 1; if (heightparts.length === 2) { payload = parseFloat(heightparts[1]); if (!isFinite(payload)) { payload = 1; } } if (isFinite(base) && isFinite(height)) { const result = Decimal.pentate(base, height, payload); this.sign = result.sign; this.layer = result.layer; this.mag = result.mag; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } //Handle x^^y format. const tetrationparts = value.split("^^"); if (tetrationparts.length === 2) { const base = parseFloat(tetrationparts[0]); const height = parseFloat(tetrationparts[1]); const heightparts = tetrationparts[1].split(";"); let payload = 1; if (heightparts.length === 2) { payload = parseFloat(heightparts[1]); if (!isFinite(payload)) { payload = 1; } } if (isFinite(base) && isFinite(height)) { const result = Decimal.tetrate(base, height, payload); this.sign = result.sign; this.layer = result.layer; this.mag = result.mag; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } //Handle x^y format. const powparts = value.split("^"); if (powparts.length === 2) { const base = parseFloat(powparts[0]); const exponent = parseFloat(powparts[1]); if (isFinite(base) && isFinite(exponent)) { const result = Decimal.pow(base, exponent); this.sign = result.sign; this.layer = result.layer; this.mag = result.mag; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } //Handle various cases involving it being a Big Number. value = value.trim().toLowerCase(); //handle X PT Y format. let base; let height; let ptparts = value.split("pt"); if (ptparts.length === 2) { base = 10; height = parseFloat(ptparts[0]); ptparts[1] = ptparts[1].replace("(", ""); ptparts[1] = ptparts[1].replace(")", ""); let payload = parseFloat(ptparts[1]); if (!isFinite(payload)) { payload = 1; } if (isFinite(base) && isFinite(height)) { const result = Decimal.tetrate(base, height, payload); this.sign = result.sign; this.layer = result.layer; this.mag = result.mag; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } //handle XpY format (it's the same thing just with p). ptparts = value.split("p"); if (ptparts.length === 2) { base = 10; height = parseFloat(ptparts[0]); ptparts[1] = ptparts[1].replace("(", ""); ptparts[1] = ptparts[1].replace(")", ""); let payload = parseFloat(ptparts[1]); if (!isFinite(payload)) { payload = 1; } if (isFinite(base) && isFinite(height)) { const result = Decimal.tetrate(base, height, payload); this.sign = result.sign; this.layer = result.layer; this.mag = result.mag; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } const parts = value.split("e"); const ecount = parts.length - 1; //Handle numbers that are exactly floats (0 or 1 es). if (ecount === 0) { const numberAttempt = parseFloat(value); if (isFinite(numberAttempt)) { this.fromNumber(numberAttempt); if (Decimal.fromStringCache.size >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } else if (ecount === 1) { //Very small numbers ("2e-3000" and so on) may look like valid floats but round to 0. const numberAttempt = parseFloat(value); if (isFinite(numberAttempt) && numberAttempt !== 0) { this.fromNumber(numberAttempt); if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } //Handle new (e^N)X format. const newparts = value.split("e^"); if (newparts.length === 2) { this.sign = 1; if (newparts[0].charAt(0) == "-") { this.sign = -1; } let layerstring = ""; for (let i = 0; i < newparts[1].length; ++i) { const chrcode = newparts[1].charCodeAt(i); if ((chrcode >= 43 && chrcode <= 57) || chrcode === 101) { //is "0" to "9" or "+" or "-" or "." or "e" (or "," or "/") layerstring += newparts[1].charAt(i); } //we found the end of the layer count else { this.layer = parseFloat(layerstring); this.mag = parseFloat(newparts[1].substr(i + 1)); this.normalize(); if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } } } if (ecount < 1) { this.sign = 0; this.layer = 0; this.mag = 0; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } const mantissa = parseFloat(parts[0]); if (mantissa === 0) { this.sign = 0; this.layer = 0; this.mag = 0; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } let exponent = parseFloat(parts[parts.length - 1]); //handle numbers like AeBeC and AeeeeBeC if (ecount >= 2) { const me = parseFloat(parts[parts.length - 2]); if (isFinite(me)) { exponent *= Math.sign(me); exponent += f_maglog10(me); } } //Handle numbers written like eee... (N es) X if (!isFinite(mantissa)) { this.sign = parts[0] === "-" ? -1 : 1; this.layer = ecount; this.mag = exponent; } //Handle numbers written like XeY else if (ecount === 1) { this.sign = Math.sign(mantissa); this.layer = 1; //Example: 2e10 is equal to 10^log10(2e10) which is equal to 10^(10+log10(2)) this.mag = exponent + Math.log10(Math.abs(mantissa)); } //Handle numbers written like Xeee... (N es) Y else { this.sign = Math.sign(mantissa); this.layer = ecount; if (ecount === 2) { const result = Decimal.mul(FC(1, 2, exponent), D(mantissa)); this.sign = result.sign; this.layer = result.layer; this.mag = result.mag; if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } else { //at eee and above, mantissa is too small to be recognizable! this.mag = exponent; } } this.normalize(); if (Decimal.fromStringCache.maxSize >= 1) { Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this)); } return this; } public fromValue(value: DecimalSource): Decimal { if (value instanceof Decimal) { return this.fromDecimal(value); } if (typeof value === "number") { return this.fromNumber(value); } if (typeof value === "string") { return this.fromString(value); } this.sign = 0; this.layer = 0; this.mag = 0; return this; } public toNumber(): number { if (!Number.isFinite(this.layer)) { return Number.NaN; } if (this.layer === 0) { return this.sign * this.mag; } else if (this.layer === 1) { return this.sign * Math.pow(10, this.mag); } //overflow for any normalized Decimal else { return this.mag > 0 ? this.sign > 0 ? Number.POSITIVE_INFINITY : Number.NEGATIVE_INFINITY : 0; } } public mantissaWithDecimalPlaces(places: number): number { // https://stackoverflow.com/a/37425022 if (isNaN(this.m)) { return Number.NaN; } if (this.m === 0) { return 0; } return decimalPlaces(this.m, places); } public magnitudeWithDecimalPlaces(places: number): number { // https://stackoverflow.com/a/37425022 if (isNaN(this.mag)) { return Number.NaN; } if (this.mag === 0) { return 0; } return decimalPlaces(this.mag, places); } public toString(): string { if (isNaN(this.layer) || isNaN(this.sign) || isNaN(this.mag)) { return "NaN"; } if (this.mag === Number.POSITIVE_INFINITY || this.layer === Number.POSITIVE_INFINITY) { return this.sign === 1 ? "Infinity" : "-Infinity"; } if (this.layer === 0) { if ((this.mag < 1e21 && this.mag > 1e-7) || this.mag === 0) { return (this.sign * this.mag).toString(); } return this.m + "e" + this.e; } else if (this.layer === 1) { return this.m + "e" + this.e; } else { //layer 2+ if (this.layer <= MAX_ES_IN_A_ROW) { return (this.sign === -1 ? "-" : "") + "e".repeat(this.layer) + this.mag; } else { return (this.sign === -1 ? "-" : "") + "(e^" + this.layer + ")" + this.mag; } } } public toExponential(places: number): string { if (this.layer === 0) { return (this.sign * this.mag).toExponential(places); } return this.toStringWithDecimalPlaces(places); } public toFixed(places: number): string { if (this.layer === 0) { return (this.sign * this.mag).toFixed(places); } return this.toStringWithDecimalPlaces(places); } public toPrecision(places: number): string { if (this.e <= -7) { return this.toExponential(places - 1); } if (places > this.e) { return this.toFixed(places - this.exponent - 1); } return this.toExponential(places - 1); } public valueOf(): string { return this.toString(); } public toJSON(): string { return this.toString(); } public toStringWithDecimalPlaces(places: number): string { if (this.layer === 0) { if ((this.mag < 1e21 && this.mag > 1e-7) || this.mag === 0) { return (this.sign * this.mag).toFixed(places); } return decimalPlaces(this.m, places) + "e" + decimalPlaces(this.e, places); } else if (this.layer === 1) { return decimalPlaces(this.m, places) + "e" + decimalPlaces(this.e, places); } else { //layer 2+ if (this.layer <= MAX_ES_IN_A_ROW) { return ( (this.sign === -1 ? "-" : "") + "e".repeat(this.layer) + decimalPlaces(this.mag, places) ); } else { return ( (this.sign === -1 ? "-" : "") + "(e^" + this.layer + ")" + decimalPlaces(this.mag, places) ); } } } public abs(): Decimal { return FC_NN(this.sign === 0 ? 0 : 1, this.layer, this.mag); } public neg(): Decimal { return FC_NN(-this.sign, this.layer, this.mag); } public negate(): Decimal { return this.neg(); } public negated(): Decimal { return this.neg(); } // public sign () { // return this.sign; // } public sgn(): number { return this.sign; } public round(): this | Decimal { if (this.mag < 0) { return Decimal.dZero; } if (this.layer === 0) { return FC(this.sign, 0, Math.round(this.mag)); } return this; } public floor(): this | Decimal { if (this.mag < 0) { return Decimal.dZero; } if (this.layer === 0) { return FC(this.sign, 0, Math.floor(this.mag)); } return this; } public ceil(): this | Decimal { if (this.mag < 0) { return Decimal.dZero; } if (this.layer === 0) { return FC(this.sign, 0, Math.ceil(this.mag)); } return this; } public trunc(): this | Decimal { if (this.mag < 0) { return Decimal.dZero; } if (this.layer === 0) { return FC(this.sign, 0, Math.trunc(this.mag)); } return this; } public add(value: DecimalSource): this | Decimal { const decimal = D(value); //inf/nan check if (!Number.isFinite(this.layer)) { return this; } if (!Number.isFinite(decimal.layer)) { return decimal; } //Special case - if one of the numbers is 0, return the other number. if (this.sign === 0) { return decimal; } if (decimal.sign === 0) { return this; } //Special case - Adding a number to its negation produces 0, no matter how large. if ( this.sign === -decimal.sign && this.layer === decimal.layer && this.mag === decimal.mag ) { return FC_NN(0, 0, 0); } let a; let b; //Special case: If one of the numbers is layer 2 or higher, just take the bigger number. if (this.layer >= 2 || decimal.layer >= 2) { return this.maxabs(decimal); } if (Decimal.cmpabs(this, decimal) > 0) { a = this; b = decimal; } else { a = decimal; b = this; } if (a.layer === 0 && b.layer === 0) { return Decimal.fromNumber(a.sign * a.mag + b.sign * b.mag); } const layera = a.layer * Math.sign(a.mag); const layerb = b.layer * Math.sign(b.mag); //If one of the numbers is 2+ layers higher than the other, just take the bigger number. if (layera - layerb >= 2) { return a; } if (layera === 0 && layerb === -1) { if (Math.abs(b.mag - Math.log10(a.mag)) > MAX_SIGNIFICANT_DIGITS) { return a; } else { const magdiff = Math.pow(10, Math.log10(a.mag) - b.mag); const mantissa = b.sign + a.sign * magdiff; return FC(Math.sign(mantissa), 1, b.mag + Math.log10(Math.abs(mantissa))); } } if (layera === 1 && layerb === 0) { if (Math.abs(a.mag - Math.log10(b.mag)) > MAX_SIGNIFICANT_DIGITS) { return a; } else { const magdiff = Math.pow(10, a.mag - Math.log10(b.mag)); const mantissa = b.sign + a.sign * magdiff; return FC( Math.sign(mantissa), 1, Math.log10(b.mag) + Math.log10(Math.abs(mantissa)) ); } } if (Math.abs(a.mag - b.mag) > MAX_SIGNIFICANT_DIGITS) { return a; } else { const magdiff = Math.pow(10, a.mag - b.mag); const mantissa = b.sign + a.sign * magdiff; return FC(Math.sign(mantissa), 1, b.mag + Math.log10(Math.abs(mantissa))); } throw Error("Bad arguments to add: " + this + ", " + value); } public plus(value: DecimalSource): Decimal { return this.add(value); } public sub(value: DecimalSource): Decimal { return this.add(D(value).neg()); } public subtract(value: DecimalSource): Decimal { return this.sub(value); } public minus(value: DecimalSource): Decimal { return this.sub(value); } public mul(value: DecimalSource): Decimal { const decimal = D(value); //inf/nan check if (!Number.isFinite(this.layer)) { return this; } if (!Number.isFinite(decimal.layer)) { return decimal; } //Special case - if one of the numbers is 0, return 0. if (this.sign === 0 || decimal.sign === 0) { return FC_NN(0, 0, 0); } //Special case - Multiplying a number by its own reciprocal yields +/- 1, no matter how large. if (this.layer === decimal.layer && this.mag === -decimal.mag) { return FC_NN(this.sign * decimal.sign, 0, 1); } let a; let b; //Which number is bigger in terms of its multiplicative distance from 1? if ( this.layer > decimal.layer || (this.layer == decimal.layer && Math.abs(this.mag) > Math.abs(decimal.mag)) ) { a = this; b = decimal; } else { a = decimal; b = this; } if (a.layer === 0 && b.layer === 0) { return Decimal.fromNumber(a.sign * b.sign * a.mag * b.mag); } //Special case: If one of the numbers is layer 3 or higher or one of the numbers is 2+ layers bigger than the other, just take the bigger number. if (a.layer >= 3 || a.layer - b.layer >= 2) { return FC(a.sign * b.sign, a.layer, a.mag); } if (a.layer === 1 && b.layer === 0) { return FC(a.sign * b.sign, 1, a.mag + Math.log10(b.mag)); } if (a.layer === 1 && b.layer === 1) { return FC(a.sign * b.sign, 1, a.mag + b.mag); } if (a.layer === 2 && b.layer === 1) { const newmag = FC(Math.sign(a.mag), a.layer - 1, Math.abs(a.mag)).add( FC(Math.sign(b.mag), b.layer - 1, Math.abs(b.mag)) ); return FC(a.sign * b.sign, newmag.layer + 1, newmag.sign * newmag.mag); } if (a.layer === 2 && b.layer === 2) { const newmag = FC(Math.sign(a.mag), a.layer - 1, Math.abs(a.mag)).add( FC(Math.sign(b.mag), b.layer - 1, Math.abs(b.mag)) ); return FC(a.sign * b.sign, newmag.layer + 1, newmag.sign * newmag.mag); } throw Error("Bad arguments to mul: " + this + ", " + value); } public multiply(value: DecimalSource): Decimal { return this.mul(value); } public times(value: DecimalSource): Decimal { return this.mul(value); } public div(value: DecimalSource): Decimal { const decimal = D(value); return this.mul(decimal.recip()); } public divide(value: DecimalSource): Decimal { return this.div(value); } public divideBy(value: DecimalSource): Decimal { return this.div(value); } public dividedBy(value: DecimalSource): Decimal { return this.div(value); } public recip(): Decimal { if (this.mag === 0) { return Decimal.dNaN; } else if (this.layer === 0) { return FC(this.sign, 0, 1 / this.mag); } else { return FC(this.sign, this.layer, -this.mag); } } public reciprocal(): Decimal { return this.recip(); } public reciprocate(): Decimal { return this.recip(); } /** * -1 for less than value, 0 for equals value, 1 for greater than value */ public cmp(value: DecimalSource): CompareResult { const decimal = D(value); if (this.sign > decimal.sign) { return 1; } if (this.sign < decimal.sign) { return -1; } return (this.sign * this.cmpabs(value)) as CompareResult; } public cmpabs(value: DecimalSource): CompareResult { const decimal = D(value); const layera = this.mag > 0 ? this.layer : -this.layer; const layerb = decimal.mag > 0 ? decimal.layer : -decimal.layer; if (layera > layerb) { return 1; } if (layera < layerb) { return -1; } if (this.mag > decimal.mag) { return 1; } if (this.mag < decimal.mag) { return -1; } return 0; } public compare(value: DecimalSource): CompareResult { return this.cmp(value); } public isNan(): boolean { return isNaN(this.sign) || isNaN(this.layer) || isNaN(this.mag); } public isFinite(): boolean { return isFinite(this.sign) && isFinite(this.layer) && isFinite(this.mag); } public eq(value: DecimalSource): boolean { const decimal = D(value); return ( this.sign === decimal.sign && this.layer === decimal.layer && this.mag === decimal.mag ); } public equals(value: DecimalSource): boolean { return this.eq(value); } public neq(value: DecimalSource): boolean { return !this.eq(value); } public notEquals(value: DecimalSource): boolean { return this.neq(value); } public lt(value: DecimalSource): boolean { return this.cmp(value) === -1; } public lte(value: DecimalSource): boolean { return !this.gt(value); } public gt(value: DecimalSource): boolean { return this.cmp(value) === 1; } public gte(value: DecimalSource): boolean { return !this.lt(value); } public max(value: DecimalSource): Decimal { const decimal = D(value); return this.lt(decimal) ? decimal : this; } public min(value: DecimalSource): Decimal { const decimal = D(value); return this.gt(decimal) ? decimal : this; } public maxabs(value: DecimalSource): Decimal { const decimal = D(value); return this.cmpabs(decimal) < 0 ? decimal : this; } public minabs(value: DecimalSource): Decimal { const decimal = D(value); return this.cmpabs(decimal) > 0 ? decimal : this; } public clamp(min: DecimalSource, max: DecimalSource): Decimal { return this.max(min).min(max); } public clampMin(min: DecimalSource): Decimal { return this.max(min); } public clampMax(max: DecimalSource): Decimal { return this.min(max); } public cmp_tolerance(value: DecimalSource, tolerance: number): CompareResult { const decimal = D(value); return this.eq_tolerance(decimal, tolerance) ? 0 : this.cmp(decimal); } public compare_tolerance(value: DecimalSource, tolerance: number): CompareResult { return this.cmp_tolerance(value, tolerance); } /** * Tolerance is a relative tolerance, multiplied by the greater of the magnitudes of the two arguments. * For example, if you put in 1e-9, then any number closer to the * larger number than (larger number)*1e-9 will be considered equal. */ public eq_tolerance(value: DecimalSource, tolerance: number): boolean { const decimal = D(value); // https://stackoverflow.com/a/33024979 if (tolerance == null) { tolerance = 1e-7; } //Numbers that are too far away are never close. if (this.sign !== decimal.sign) { return false; } if (Math.abs(this.layer - decimal.layer) > 1) { return false; } // return abs(a-b) <= tolerance * max(abs(a), abs(b)) let magA = this.mag; let magB = decimal.mag; if (this.layer > decimal.layer) { magB = f_maglog10(magB); } if (this.layer < decimal.layer) { magA = f_maglog10(magA); } return Math.abs(magA - magB) <= tolerance * Math.max(Math.abs(magA), Math.abs(magB)); } public equals_tolerance(value: DecimalSource, tolerance: number): boolean { return this.eq_tolerance(value, tolerance); } public neq_tolerance(value: DecimalSource, tolerance: number): boolean { return !this.eq_tolerance(value, tolerance); } public notEquals_tolerance(value: DecimalSource, tolerance: number): boolean { return this.neq_tolerance(value, tolerance); } public lt_tolerance(value: DecimalSource, tolerance: number): boolean { const decimal = D(value); return !this.eq_tolerance(decimal, tolerance) && this.lt(decimal); } public lte_tolerance(value: DecimalSource, tolerance: number): boolean { const decimal = D(value); return this.eq_tolerance(decimal, tolerance) || this.lt(decimal); } public gt_tolerance(value: DecimalSource, tolerance: number): boolean { const decimal = D(value); return !this.eq_tolerance(decimal, tolerance) && this.gt(decimal); } public gte_tolerance(value: DecimalSource, tolerance: number): boolean { const decimal = D(value); return this.eq_tolerance(decimal, tolerance) || this.gt(decimal); } public pLog10(): Decimal { if (this.lt(Decimal.dZero)) { return Decimal.dZero; } return this.log10(); } public absLog10(): Decimal { if (this.sign === 0) { return Decimal.dNaN; } else if (this.layer > 0) { return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag)); } else { return FC(1, 0, Math.log10(this.mag)); } } public log10(): Decimal { if (this.sign <= 0) { return Decimal.dNaN; } else if (this.layer > 0) { return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag)); } else { return FC(this.sign, 0, Math.log10(this.mag)); } } public log(base: DecimalSource): Decimal { base = D(base); if (this.sign <= 0) { return Decimal.dNaN; } if (base.sign <= 0) { return Decimal.dNaN; } if (base.sign === 1 && base.layer === 0 && base.mag === 1) { return Decimal.dNaN; } else if (this.layer === 0 && base.layer === 0) { return FC(this.sign, 0, Math.log(this.mag) / Math.log(base.mag)); } return Decimal.div(this.log10(), base.log10()); } public log2(): Decimal { if (this.sign <= 0) { return Decimal.dNaN; } else if (this.layer === 0) { return FC(this.sign, 0, Math.log2(this.mag)); } else if (this.layer === 1) { return FC(Math.sign(this.mag), 0, Math.abs(this.mag) * 3.321928094887362); //log2(10) } else if (this.layer === 2) { return FC(Math.sign(this.mag), 1, Math.abs(this.mag) + 0.5213902276543247); //-log10(log10(2)) } else { return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag)); } } public ln(): Decimal { if (this.sign <= 0) { return Decimal.dNaN; } else if (this.layer === 0) { return FC(this.sign, 0, Math.log(this.mag)); } else if (this.layer === 1) { return FC(Math.sign(this.mag), 0, Math.abs(this.mag) * 2.302585092994046); //ln(10) } else if (this.layer === 2) { return FC(Math.sign(this.mag), 1, Math.abs(this.mag) + 0.36221568869946325); //log10(log10(e)) } else { return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag)); } } public logarithm(base: DecimalSource): Decimal { return this.log(base); } public pow(value: DecimalSource): Decimal { const decimal = D(value); const a = this; const b = decimal; //special case: if a is 0, then return 0 (UNLESS b is 0, then return 1) if (a.sign === 0) { return b.eq(0) ? FC_NN(1, 0, 1) : a; } //special case: if a is 1, then return 1 if (a.sign === 1 && a.layer === 0 && a.mag === 1) { return a; } //special case: if b is 0, then return 1 if (b.sign === 0) { return FC_NN(1, 0, 1); } //special case: if b is 1, then return a if (b.sign === 1 && b.layer === 0 && b.mag === 1) { return a; } const result = a.absLog10().mul(b).pow10(); if (this.sign === -1) { if (Math.abs(b.toNumber() % 2) % 2 === 1) { return result.neg(); } else if (Math.abs(b.toNumber() % 2) % 2 === 0) { return result; } return Decimal.dNaN; } return result; } public pow10(): Decimal { /* There are four cases we need to consider: 1) positive sign, positive mag (e15, ee15): +1 layer (e.g. 10^15 becomes e15, 10^e15 becomes ee15) 2) negative sign, positive mag (-e15, -ee15): +1 layer but sign and mag sign are flipped (e.g. 10^-15 becomes e-15, 10^-e15 becomes ee-15) 3) positive sign, negative mag (e-15, ee-15): layer 0 case would have been handled in the Math.pow check, so just return 1 4) negative sign, negative mag (-e-15, -ee-15): layer 0 case would have been handled in the Math.pow check, so just return 1 */ if (!Number.isFinite(this.layer) || !Number.isFinite(this.mag)) { return Decimal.dNaN; } let a: Decimal = this; //handle layer 0 case - if no precision is lost just use Math.pow, else promote one layer if (a.layer === 0) { const newmag = Math.pow(10, a.sign * a.mag); if (Number.isFinite(newmag) && Math.abs(newmag) >= 0.1) { return FC(1, 0, newmag); } else { if (a.sign === 0) { return Decimal.dOne; } else { a = FC_NN(a.sign, a.layer + 1, Math.log10(a.mag)); } } } //handle all 4 layer 1+ cases individually if (a.sign > 0 && a.mag >= 0) { return FC(a.sign, a.layer + 1, a.mag); } if (a.sign < 0 && a.mag >= 0) { return FC(-a.sign, a.layer + 1, -a.mag); } //both the negative mag cases are identical: one +/- rounding error return Decimal.dOne; } public pow_base(value: DecimalSource): Decimal { return D(value).pow(this); } public root(value: DecimalSource): Decimal { const decimal = D(value); return this.pow(decimal.recip()); } public factorial(): Decimal { if (this.mag < 0) { return this.add(1).gamma(); } else if (this.layer === 0) { return this.add(1).gamma(); } else if (this.layer === 1) { return Decimal.exp(Decimal.mul(this, Decimal.ln(this).sub(1))); } else { return Decimal.exp(this); } } //from HyperCalc source code public gamma(): Decimal { if (this.mag < 0) { return this.recip(); } else if (this.layer === 0) { if (this.lt(FC_NN(1, 0, 24))) { return Decimal.fromNumber(f_gamma(this.sign * this.mag)); } const t = this.mag - 1; let l = 0.9189385332046727; //0.5*Math.log(2*Math.PI) l = l + (t + 0.5) * Math.log(t); l = l - t; const n2 = t * t; let np = t; let lm = 12 * np; let adj = 1 / lm; let l2 = l + adj; if (l2 === l) { return Decimal.exp(l); } l = l2; np = np * n2; lm = 360 * np; adj = 1 / lm; l2 = l - adj; if (l2 === l) { return Decimal.exp(l); } l = l2; np = np * n2; lm = 1260 * np; let lt = 1 / lm; l = l + lt; np = np * n2; lm = 1680 * np; lt = 1 / lm; l = l - lt; return Decimal.exp(l); } else if (this.layer === 1) { return Decimal.exp(Decimal.mul(this, Decimal.ln(this).sub(1))); } else { return Decimal.exp(this); } } public lngamma(): Decimal { return this.gamma().ln(); } public exp(): Decimal { if (this.mag < 0) { return Decimal.dOne; } if (this.layer === 0 && this.mag <= 709.7) { return Decimal.fromNumber(Math.exp(this.sign * this.mag)); } else if (this.layer === 0) { return FC(1, 1, this.sign * Math.log10(Math.E) * this.mag); } else if (this.layer === 1) { return FC(1, 2, this.sign * (Math.log10(0.4342944819032518) + this.mag)); } else { return FC(1, this.layer + 1, this.sign * this.mag); } } public sqr(): Decimal { return this.pow(2); } public sqrt(): Decimal { if (this.layer === 0) { return Decimal.fromNumber(Math.sqrt(this.sign * this.mag)); } else if (this.layer === 1) { return FC(1, 2, Math.log10(this.mag) - 0.3010299956639812); } else { const result = Decimal.div(FC_NN(this.sign, this.layer - 1, this.mag), FC_NN(1, 0, 2)); result.layer += 1; result.normalize(); return result; } } public cube(): Decimal { return this.pow(3); } public cbrt(): Decimal { return this.pow(1 / 3); } //Tetration/tetrate: The result of exponentiating 'this' to 'this' 'height' times in a row. https://en.wikipedia.org/wiki/Tetration //If payload != 1, then this is 'iterated exponentiation', the result of exping (payload) to base (this) (height) times. https://andydude.github.io/tetration/archives/tetration2/ident.html //Works with negative and positive real heights. public tetrate(height = 2, payload: DecimalSource = FC_NN(1, 0, 1)): Decimal { //x^^1 == x if (height === 1) { return Decimal.pow(this, payload); } //x^^0 == 1 if (height === 0) { return new Decimal(payload); } //1^^x == 1 if (this.eq(Decimal.dOne)) { return Decimal.dOne; } //-1^^x == -1 if (this.eq(-1)) { return Decimal.pow(this, payload); } if (height === Number.POSITIVE_INFINITY) { const this_num = this.toNumber(); //within the convergence range? if (this_num <= 1.44466786100976613366 && this_num >= 0.06598803584531253708) { //hotfix for the very edge of the number range not being handled properly if (this_num > 1.444667861009099) { return Decimal.fromNumber(Math.E); } //Formula for infinite height power tower. const negln = Decimal.ln(this).neg(); return negln.lambertw().div(negln); } else if (this_num > 1.44466786100976613366) { //explodes to infinity // TODO: replace this with Decimal.dInf return Decimal.fromNumber(Number.POSITIVE_INFINITY); } else { //0.06598803584531253708 > this_num >= 0: never converges //this_num < 0: quickly becomes a complex number return Decimal.dNaN; } } //0^^x oscillates if we define 0^0 == 1 (which in javascript land we do), since then 0^^1 is 0, 0^^2 is 1, 0^^3 is 0, etc. payload is ignored //using the linear approximation for height (TODO: don't know a better way to calculate it ATM, but it wouldn't surprise me if it's just NaN) if (this.eq(Decimal.dZero)) { let result = Math.abs((height + 1) % 2); if (result > 1) { result = 2 - result; } return Decimal.fromNumber(result); } if (height < 0) { return Decimal.iteratedlog(payload, this, -height); } payload = D(payload); const oldheight = height; height = Math.trunc(height); const fracheight = oldheight - height; if (this.gt(Decimal.dZero) && this.lte(1.44466786100976613366)) { //similar to 0^^n, flip-flops between two values, converging slowly (or if it's below 0.06598803584531253708, never. so once again, the fractional part at the end will be a linear approximation (TODO: again pending knowledge of how to approximate better, although tbh I think it should in reality just be NaN) height = Math.min(10000, height); for (let i = 0; i < height; ++i) { const old_payload: Decimal = payload; payload = this.pow(payload); //stop early if we converge if (old_payload.eq(payload)) { return payload; } } if (fracheight != 0) { const next_payload = this.pow(payload); return payload.mul(1 - fracheight).add(next_payload.mul(fracheight)); } return payload; } //TODO: base < 0, but it's hard for me to reason about (probably all non-integer heights are NaN automatically?) if (fracheight !== 0) { if (payload.eq(Decimal.dOne)) { //TODO: for bases above 10, revert to old linear approximation until I can think of something better if (this.gt(10)) { payload = this.pow(fracheight); } else { payload = Decimal.fromNumber( Decimal.tetrate_critical(this.toNumber(), fracheight) ); //TODO: until the critical section grid can handle numbers below 2, scale them to the base //TODO: maybe once the critical section grid has very large bases, this math can be appropriate for them too? I'll think about it if (this.lt(2)) { payload = payload.sub(1).mul(this.minus(1)).plus(1); } } } else { if (this.eq(10)) { payload = payload.layeradd10(fracheight); } else { payload = payload.layeradd(fracheight, this); } } } for (let i = 0; i < height; ++i) { payload = this.pow(payload); //bail if we're NaN if (!isFinite(payload.layer) || !isFinite(payload.mag)) { return payload.normalize(); } //shortcut if (payload.layer - this.layer > 3) { return FC_NN(payload.sign, payload.layer + (height - i - 1), payload.mag); } //give up after 10000 iterations if nothing is happening if (i > 10000) { return payload; } } return payload; } //iteratedexp/iterated exponentiation: - all cases handled in tetrate, so just call it public iteratedexp(height = 2, payload = FC_NN(1, 0, 1)): Decimal { return this.tetrate(height, payload); } //iterated log/repeated log: The result of applying log(base) 'times' times in a row. Approximately equal to subtracting (times) from the number's slog representation. Equivalent to tetrating to a negative height. //Works with negative and positive real heights. public iteratedlog(base: DecimalSource = 10, times = 1): Decimal { if (times < 0) { return Decimal.tetrate(base, -times, this); } base = D(base); let result = Decimal.fromDecimal(this); const fulltimes = times; times = Math.trunc(times); const fraction = fulltimes - times; if (result.layer - base.layer > 3) { const layerloss = Math.min(times, result.layer - base.layer - 3); times -= layerloss; result.layer -= layerloss; } for (let i = 0; i < times; ++i) { result = result.log(base); //bail if we're NaN if (!isFinite(result.layer) || !isFinite(result.mag)) { return result.normalize(); } //give up after 10000 iterations if nothing is happening if (i > 10000) { return result; } } //handle fractional part if (fraction > 0 && fraction < 1) { if (base.eq(10)) { result = result.layeradd10(-fraction); } else { result = result.layeradd(-fraction, base); } } return result; } //Super-logarithm, one of tetration's inverses, tells you what size power tower you'd have to tetrate base to to get number. By definition, will never be higher than 1.8e308 in break_eternity.js, since a power tower 1.8e308 numbers tall is the largest representable number. // https://en.wikipedia.org/wiki/Super-logarithm // NEW: Accept a number of iterations, and use binary search to, after making an initial guess, hone in on the true value, assuming tetration as the ground truth. public slog(base: DecimalSource = 10, iterations = 100): Decimal { let step_size = 0.001; let has_changed_directions_once = false; let previously_rose = false; let result = this.slog_internal(base).toNumber(); for (let i = 1; i < iterations; ++i) { const new_decimal = new Decimal(base).tetrate(result); const currently_rose = new_decimal.gt(this); if (i > 1) { if (previously_rose != currently_rose) { has_changed_directions_once = true; } } previously_rose = currently_rose; if (has_changed_directions_once) { step_size /= 2; } else { step_size *= 2; } step_size = Math.abs(step_size) * (currently_rose ? -1 : 1); result += step_size; if (step_size === 0) { break; } } return Decimal.fromNumber(result); } public slog_internal(base: DecimalSource = 10): Decimal { base = D(base); //special cases: //slog base 0 or lower is NaN if (base.lte(Decimal.dZero)) { return Decimal.dNaN; } //slog base 1 is NaN if (base.eq(Decimal.dOne)) { return Decimal.dNaN; } //need to handle these small, wobbling bases specially if (base.lt(Decimal.dOne)) { if (this.eq(Decimal.dOne)) { return Decimal.dZero; } if (this.eq(Decimal.dZero)) { return Decimal.dNegOne; } //0 < this < 1: ambiguous (happens multiple times) //this < 0: impossible (as far as I can tell) //this > 1: partially complex (http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html base 0.25 for proof) return Decimal.dNaN; } //slog_n(0) is -1 if (this.mag < 0 || this.eq(Decimal.dZero)) { return Decimal.dNegOne; } let result = 0; let copy = Decimal.fromDecimal(this); if (copy.layer - base.layer > 3) { const layerloss = copy.layer - base.layer - 3; result += layerloss; copy.layer -= layerloss; } for (let i = 0; i < 100; ++i) { if (copy.lt(Decimal.dZero)) { copy = Decimal.pow(base, copy); result -= 1; } else if (copy.lte(Decimal.dOne)) { return Decimal.fromNumber( result + Decimal.slog_critical(base.toNumber(), copy.toNumber()) ); } else { result += 1; copy = Decimal.log(copy, base); } } return Decimal.fromNumber(result); } //background info and tables of values for critical functions taken here: https://github.com/Patashu/break_eternity.js/issues/22 public static slog_critical(base: number, height: number): number { //TODO: for bases above 10, revert to old linear approximation until I can think of something better if (base > 10) { return height - 1; } return Decimal.critical_section(base, height, critical_slog_values); } public static tetrate_critical(base: number, height: number): number { return Decimal.critical_section(base, height, critical_tetr_values); } public static critical_section(base: number, height: number, grid: number[][]): number { //this part is simple at least, since it's just 0.1 to 0.9 height *= 10; if (height < 0) { height = 0; } if (height > 10) { height = 10; } //have to do this complicated song and dance since one of the critical_headers is Math.E, and in the future I'd like 1.5 as well if (base < 2) { base = 2; } if (base > 10) { base = 10; } let lower = 0; let upper = 0; //basically, if we're between bases, we interpolate each bases' relevant values together //then we interpolate based on what the fractional height is. //accuracy could be improved by doing a non-linear interpolation (maybe), by adding more bases and heights (definitely) but this is AFAIK the best you can get without running some pari.gp or mathematica program to calculate exact values //however, do note http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html can do it for arbitrary heights but not for arbitrary bases (2, e, 10 present) for (let i = 0; i < critical_headers.length; ++i) { if (critical_headers[i] == base) { // exact match lower = grid[i][Math.floor(height)]; upper = grid[i][Math.ceil(height)]; break; } else if (critical_headers[i] < base && critical_headers[i + 1] > base) { // interpolate between this and the next const basefrac = (base - critical_headers[i]) / (critical_headers[i + 1] - critical_headers[i]); lower = grid[i][Math.floor(height)] * (1 - basefrac) + grid[i + 1][Math.floor(height)] * basefrac; upper = grid[i][Math.ceil(height)] * (1 - basefrac) + grid[i + 1][Math.ceil(height)] * basefrac; break; } } const frac = height - Math.floor(height); //improvement - you get more accuracy (especially around 0.9-1.0) by doing log, then frac, then powing the result //(we could pre-log the lookup table, but then fractional bases would get Weird) //also, use old linear for slog (values 0 or less in critical section). maybe something else is better but haven't thought about what yet if (lower <= 0 || upper <= 0) { return lower * (1 - frac) + upper * frac; } else { return Math.pow( base, (Math.log(lower) / Math.log(base)) * (1 - frac) + (Math.log(upper) / Math.log(base)) * frac ); } } //Function for adding/removing layers from a Decimal, even fractional layers (e.g. its slog10 representation). //Moved this over to use the same critical section as tetrate/slog. public layeradd10(diff: DecimalSource): Decimal { diff = Decimal.fromValue_noAlloc(diff).toNumber(); const result = Decimal.fromDecimal(this); if (diff >= 1) { //bug fix: if result is very smol (mag < 0, layer > 0) turn it into 0 first if (result.mag < 0 && result.layer > 0) { result.sign = 0; result.mag = 0; result.layer = 0; } else if (result.sign === -1 && result.layer == 0) { //bug fix - for stuff like -3.layeradd10(1) we need to move the sign to the mag result.sign = 1; result.mag = -result.mag; } const layeradd = Math.trunc(diff); diff -= layeradd; result.layer += layeradd; } if (diff <= -1) { const layeradd = Math.trunc(diff); diff -= layeradd; result.layer += layeradd; if (result.layer < 0) { for (let i = 0; i < 100; ++i) { result.layer++; result.mag = Math.log10(result.mag); if (!isFinite(result.mag)) { //another bugfix: if we hit -Infinity mag, then we should return negative infinity, not 0. 0.layeradd10(-1) h its this if (result.sign === 0) { result.sign = 1; } //also this, for 0.layeradd10(-2) if (result.layer < 0) { result.layer = 0; } return result.normalize(); } if (result.layer >= 0) { break; } } } } while (result.layer < 0) { result.layer++; result.mag = Math.log10(result.mag); } //bugfix: before we normalize: if we started with 0, we now need to manually fix a layer ourselves! if (result.sign === 0) { result.sign = 1; if (result.mag === 0 && result.layer >= 1) { result.layer -= 1; result.mag = 1; } } result.normalize(); //layeradd10: like adding 'diff' to the number's slog(base) representation. Very similar to tetrate base 10 and iterated log base 10. Also equivalent to adding a fractional amount to the number's layer in its break_eternity.js representation. if (diff !== 0) { return result.layeradd(diff, 10); //safe, only calls positive height 1 payload tetration, slog and log } return result; } //layeradd: like adding 'diff' to the number's slog(base) representation. Very similar to tetrate base 'base' and iterated log base 'base'. public layeradd(diff: number, base: DecimalSource): Decimal { const slogthis = this.slog(base).toNumber(); const slogdest = slogthis + diff; if (slogdest >= 0) { return Decimal.tetrate(base, slogdest); } else if (!Number.isFinite(slogdest)) { return Decimal.dNaN; } else if (slogdest >= -1) { return Decimal.log(Decimal.tetrate(base, slogdest + 1), base); } else { return Decimal.log(Decimal.log(Decimal.tetrate(base, slogdest + 2), base), base); } } //The Lambert W function, also called the omega function or product logarithm, is the solution W(x) === x*e^x. // https://en.wikipedia.org/wiki/Lambert_W_function //Some special values, for testing: https://en.wikipedia.org/wiki/Lambert_W_function#Special_values public lambertw(): Decimal { if (this.lt(-0.3678794411710499)) { throw Error("lambertw is unimplemented for results less than -1, sorry!"); } else if (this.mag < 0) { return Decimal.fromNumber(f_lambertw(this.toNumber())); } else if (this.layer === 0) { return Decimal.fromNumber(f_lambertw(this.sign * this.mag)); } else if (this.layer === 1) { return d_lambertw(this); } else if (this.layer === 2) { return d_lambertw(this); } if (this.layer >= 3) { return FC_NN(this.sign, this.layer - 1, this.mag); } throw "Unhandled behavior in lambertw()"; } //The super square-root function - what number, tetrated to height 2, equals this? //Other sroots are possible to calculate probably through guess and check methods, this one is easy though. // https://en.wikipedia.org/wiki/Tetration#Super-root public ssqrt(): Decimal { if (this.sign == 1 && this.layer >= 3) { return FC_NN(this.sign, this.layer - 1, this.mag); } const lnx = this.ln(); return lnx.div(lnx.lambertw()); } //Pentation/pentate: The result of tetrating 'height' times in a row. An absurdly strong operator - Decimal.pentate(2, 4.28) and Decimal.pentate(10, 2.37) are already too huge for break_eternity.js! // https://en.wikipedia.org/wiki/Pentation public pentate(height = 2, payload: DecimalSource = FC_NN(1, 0, 1)): Decimal { payload = D(payload); const oldheight = height; height = Math.trunc(height); const fracheight = oldheight - height; //I have no idea if this is a meaningful approximation for pentation to continuous heights, but it is monotonic and continuous. if (fracheight !== 0) { if (payload.eq(Decimal.dOne)) { ++height; payload = Decimal.fromNumber(fracheight); } else { if (this.eq(10)) { payload = payload.layeradd10(fracheight); } else { payload = payload.layeradd(fracheight, this); } } } for (let i = 0; i < height; ++i) { payload = this.tetrate(payload.toNumber()); //bail if we're NaN if (!isFinite(payload.layer) || !isFinite(payload.mag)) { return payload.normalize(); } //give up after 10 iterations if nothing is happening if (i > 10) { return payload; } } return payload; } // trig functions! public sin(): this | Decimal { if (this.mag < 0) { return this; } if (this.layer === 0) { return Decimal.fromNumber(Math.sin(this.sign * this.mag)); } return FC_NN(0, 0, 0); } public cos(): Decimal { if (this.mag < 0) { return Decimal.dOne; } if (this.layer === 0) { return Decimal.fromNumber(Math.cos(this.sign * this.mag)); } return FC_NN(0, 0, 0); } public tan(): this | Decimal { if (this.mag < 0) { return this; } if (this.layer === 0) { return Decimal.fromNumber(Math.tan(this.sign * this.mag)); } return FC_NN(0, 0, 0); } public asin(): this | Decimal { if (this.mag < 0) { return this; } if (this.layer === 0) { return Decimal.fromNumber(Math.asin(this.sign * this.mag)); } return FC_NN(Number.NaN, Number.NaN, Number.NaN); } public acos(): Decimal { if (this.mag < 0) { return Decimal.fromNumber(Math.acos(this.toNumber())); } if (this.layer === 0) { return Decimal.fromNumber(Math.acos(this.sign * this.mag)); } return FC_NN(Number.NaN, Number.NaN, Number.NaN); } public atan(): this | Decimal { if (this.mag < 0) { return this; } if (this.layer === 0) { return Decimal.fromNumber(Math.atan(this.sign * this.mag)); } return Decimal.fromNumber(Math.atan(this.sign * 1.8e308)); } public sinh(): Decimal { return this.exp().sub(this.negate().exp()).div(2); } public cosh(): Decimal { return this.exp().add(this.negate().exp()).div(2); } public tanh(): Decimal { return this.sinh().div(this.cosh()); } public asinh(): Decimal { return Decimal.ln(this.add(this.sqr().add(1).sqrt())); } public acosh(): Decimal { return Decimal.ln(this.add(this.sqr().sub(1).sqrt())); } public atanh(): Decimal { if (this.abs().gte(1)) { return FC_NN(Number.NaN, Number.NaN, Number.NaN); } return Decimal.ln(this.add(1).div(Decimal.fromNumber(1).sub(this))).div(2); } /** * Joke function from Realm Grinder */ public ascensionPenalty(ascensions: DecimalSource): Decimal { if (ascensions === 0) { return this; } return this.root(Decimal.pow(10, ascensions)); } /** * Joke function from Cookie Clicker. It's 'egg' */ public egg(): Decimal { return this.add(9); } public lessThanOrEqualTo(other: DecimalSource): boolean { return this.cmp(other) < 1; } public lessThan(other: DecimalSource): boolean { return this.cmp(other) < 0; } public greaterThanOrEqualTo(other: DecimalSource): boolean { return this.cmp(other) > -1; } public greaterThan(other: DecimalSource): boolean { return this.cmp(other) > 0; } // return Decimal; } // return Decimal; // Optimise Decimal aliases. // We can't do this optimisation before Decimal is assigned. D = Decimal.fromValue_noAlloc; FC = Decimal.fromComponents; FC_NN = Decimal.fromComponents_noNormalize; // eslint-disable-next-line @typescript-eslint/no-unused-vars ME = Decimal.fromMantissaExponent; // eslint-disable-next-line @typescript-eslint/no-unused-vars ME_NN = Decimal.fromMantissaExponent_noNormalize;