pages/assets/chunks/theme.4ggPrxWj.js

3949 lines
779 KiB
JavaScript
Raw Normal View History

const __vite__fileDeps=["assets/chunks/VPLocalSearchBox.LIgbwrDm.js","assets/chunks/framework.Sr2_9k8k.js"],__vite__mapDeps=i=>i.map(i=>__vite__fileDeps[i]);
import{u as j,r as Ge,w as Ct,i as $d,t as Vm,c as Hm,o as Nn,n as qc,g as Gm,a as Wm,b as ma,d as gr,e as ke,f as Ri,h as zr,j as $m,k as Be,l as Xd,s as Rn,m as Wn,p as Y,q as fe,v as yt,x as Yc,y as vr,z as Xm,A as eh,F as xt,B as qm,C as cn,D as $e,E as ye,G as Jt,H as De,I as Fe,J as ue,K as Ht,L as ft,T as Zc,_ as Ye,M as Ym,N as Zm,O as Jm,P as Jc,Q as me,R as Wt,S as $t,U as is,V as Kl,W as qd,X as Km,Y as jm,Z as Aa,$ as Bs,a0 as Yd,a1 as Vr,a2 as ia,a3 as Qm,a4 as jl,a5 as Zd,a6 as Ta,a7 as eg,a8 as tg,a9 as Jd,aa as ng,ab as ig,ac as sg,ad as rg,ae as og,af as ag}from"./framework.Sr2_9k8k.js";/**
* @license
* Copyright 2010-2024 Three.js Authors
* SPDX-License-Identifier: MIT
*/const Hr="165",lg={LEFT:0,MIDDLE:1,RIGHT:2,ROTATE:0,DOLLY:1,PAN:2},cg={ROTATE:0,PAN:1,DOLLY_PAN:2,DOLLY_ROTATE:3},Kd=0,Ql=1,jd=2,ug=3,hg=0,Kc=1,jc=2,kn=3,oi=0,nn=1,En=2,si=0,es=1,ga=2,ec=3,tc=4,Qd=5,Ai=100,ef=101,tf=102,nf=103,sf=104,rf=200,of=201,af=202,lf=203,va=204,_a=205,cf=206,uf=207,hf=208,df=209,ff=210,pf=211,mf=212,gf=213,vf=214,_f=0,yf=1,xf=2,_r=3,Mf=4,bf=5,Sf=6,wf=7,Gr=0,Af=1,Tf=2,Hn=0,Ef=1,Cf=2,Pf=3,Ea=4,Rf=5,If=6,Lf=7,nc="attached",Nf="detached",Ca=300,ai=301,Ci=302,yr=303,xr=304,Ws=306,Mr=1e3,Mn=1001,br=1002,Gt=1003,Qc=1004,dg=1004,Ds=1005,fg=1005,Ot=1006,hr=1007,pg=1007,zn=1008,mg=1008,li=1009,Df=1010,Uf=1011,Sr=1012,eu=1013,ss=1014,gn=1015,Wr=1016,tu=1017,nu=1018,rs=1020,Of=35902,Ff=1021,kf=1022,un=1023,Bf=1024,zf=1025,ts=1026,os=1027,iu=1028,su=1029,Vf=1030,ru=1031,ou=1033,sa=33776,ra=33777,oa=33778,aa=33779,ic=35840,sc=35841,rc=35842,oc=35843,ac=36196,lc=37492,cc=37496,uc=37808,hc=37809,dc=37810,fc=37811,pc=37812,mc=37813,gc=37814,vc=37815,_c=37816,yc=37817,xc=37818,Mc=37819,bc=37820,Sc=37821,la=36492,wc=36494,Ac=36495,Hf=36283,Tc=36284,Ec=36285,Cc=36286,Gf=2200,Wf=2201,$f=2202,wr=2300,ya=2301,ca=2302,Ji=2400,Ki=2401,Ar=2402,Pa=2500,au=2501,gg=0,vg=1,_g=2,Xf=3200,qf=3201,Ii=0,Yf=1,ti="",ln="srgb",ci="srgb-linear",Ra="display-p3",$r="display-p3-linear",Tr="linear",Mt="srgb",Er="rec709",Cr="p3",yg=0,Bn=7680,xg=7681,Mg=7682,bg=7683,Sg=34055,wg=34056,Ag=5386,Tg=512,Eg=513,Zf=514,Cg=515,Pg=516,Rg=517,Ig=518,Pc=519,Jf=512,Kf=513,jf=514,lu=515,Qf=516,ep=517,tp=518,np=519,Pr=35044,Lg=35048,Ng=35040,Dg=35045,Ug=35049,Og=35041,Fg=35046,kg=35050,Bg=35042,zg="100",Rc="300 es",Vn=2e3,Rr=2001;class ui{addEventListener(e,t){this._listeners===void 0&&(this._listeners={});const n=this._listeners;n[e]===void 0&&(n[e]=[]),n[e].indexOf(t)===-1&&n[e].push(t)}hasEventListener(e,t){if(this._listeners===void 0)return!1;const n=this._listeners;return n[e]!==void 0&&n[e].indexOf(t)!==-1}removeEventListener(e,t){if(this._listeners===void 0)return;const i=this._listeners[e];if(i!==void 0){const r=i.indexOf(t);r!==-1&&i.splice(r,1)}}dispatchEvent(e){if(this._listeners===void 0)return;const n=this._listeners[e.type];if(n!==void 0){e.target=this;const i=n.slice(0);for(let r=0,o=i.length;r<o;r++)i[r].call(this,e);e.target=null}}}const Xt=["00","01","02","03","04","05","06","07","08","09","0a","0b","0c","0d","0e","0f","10","11","12","13","14","15","16","17","18","19","1a","1b","1c","1d","1e","1f","20","21","22","23","24","25","26","27","28","29","2a","2b","2c","2d","2e","2f","30","31","32","33","34","35","36","37","38","39","3a","3b","3c","3d","3e","3f","40","41","42","43","44","45","46","47","48","49","4a","4b","4c","4d","4e","4f","50","51","52","53","54","55","56","57","58","59","5a","5b","5c","5d","5e","5f","60","61","62","63","64","65","66","67","68","69","6a","6b","6c","6d","6e","6f","70","71","72","73","74","75","76","77","78","79","7a","7b","7c","7d","7e","7f","80","81","82","83","84","85","86","87","88","89","8a","8b","8c","8d","8e","8f","90","91","92","93","94","95","96","97","98","99","9a","9b","9c","9d","9e","9f","a0","a1","a2","a3","a4","a5","a6","a7","a8","a9","aa","ab","ac","ad","ae","af","b0","b1","b2","b3","b4","b5","b6","b7","b8","b9","ba","bb","bc","bd","be","bf","c0","c1","c2","c3","c4","c5","c6","c7","c8","c9","ca","cb","cc","cd","ce","cf","d0","d1","d2","d3","d4","d5","d6","d7","d8","d9","da","db","dc","dd","de","df","e0","e1","e2","e3","e4","e5","e6","e7","e8","e9","ea","eb","ec","ed","ee","ef","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9","fa","fb","fc","fd","fe","ff"];let th=1234567;const ns=Math.PI/180,Vs=180/Math.PI;function vn(){const s=Math.random()*4294967295|0,e=Math.random()*4294967295|0,t=Math.random()*4294967295|0,n=Math.random()*4294967295|0;return(Xt[s&255]+Xt[s>>8&255]+Xt[s>>16&255]+Xt[s>>24&255]+"-"+Xt[e&255]+Xt[e>>8&255]+"-"+Xt[e>>16&15|64]+Xt[e>>24&255]+"-"+Xt[t&63|128]+Xt[t>>8&255]+"-"+Xt[t>>16&255]+Xt[t>>24&255]+Xt[n&255]+Xt[n>>8&255]+Xt[n>>16&255]+Xt[n>>24&255]).toLowerCase()}function Et(s,e,t){return Math.max(e,Math.min(t,s))}function cu(s,e){return(s%e+e)%e}function Vg(s,e,t,n,i){retur
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,Rv=`void main() {
gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );
}`;class Ln extends Kt{constructor(e){super(),this.isShaderMaterial=!0,this.type="ShaderMaterial",this.defines={},this.uniforms={},this.uniformsGroups=[],this.vertexShader=Pv,this.fragmentShader=Rv,this.linewidth=1,this.wireframe=!1,this.wireframeLinewidth=1,this.fog=!1,this.lights=!1,this.clipping=!1,this.forceSinglePass=!0,this.extensions={clipCullDistance:!1,multiDraw:!1},this.defaultAttributeValues={color:[1,1,1],uv:[0,0],uv1:[0,0]},this.index0AttributeName=void 0,this.uniformsNeedUpdate=!1,this.glslVersion=null,e!==void 0&&this.setValues(e)}copy(e){return super.copy(e),this.fragmentShader=e.fragmentShader,this.vertexShader=e.vertexShader,this.uniforms=Hs(e.uniforms),this.uniformsGroups=Cv(e.uniformsGroups),this.defines=Object.assign({},e.defines),this.wireframe=e.wireframe,this.wireframeLinewidth=e.wireframeLinewidth,this.fog=e.fog,this.lights=e.lights,this.clipping=e.clipping,this.extensions=Object.assign({},e.extensions),this.glslVersion=e.glslVersion,this}toJSON(e){const t=super.toJSON(e);t.glslVersion=this.glslVersion,t.uniforms={};for(const i in this.uniforms){const o=this.uniforms[i].value;o&&o.isTexture?t.uniforms[i]={type:"t",value:o.toJSON(e).uuid}:o&&o.isColor?t.uniforms[i]={type:"c",value:o.getHex()}:o&&o.isVector2?t.uniforms[i]={type:"v2",value:o.toArray()}:o&&o.isVector3?t.uniforms[i]={type:"v3",value:o.toArray()}:o&&o.isVector4?t.uniforms[i]={type:"v4",value:o.toArray()}:o&&o.isMatrix3?t.uniforms[i]={type:"m3",value:o.toArray()}:o&&o.isMatrix4?t.uniforms[i]={type:"m4",value:o.toArray()}:t.uniforms[i]={value:o}}Object.keys(this.defines).length>0&&(t.defines=this.defines),t.vertexShader=this.vertexShader,t.fragmentShader=this.fragmentShader,t.lights=this.lights,t.clipping=this.clipping;const n={};for(const i in this.extensions)this.extensions[i]===!0&&(n[i]=!0);return Object.keys(n).length>0&&(t.extensions=n),t}}class Xr extends ct{constructor(){super(),this.isCamera=!0,this.type="Camera",this.matrixWorldInverse=new qe,this.projectionMatrix=new qe,this.projectionMatrixInverse=new qe,this.coordinateSystem=Vn}copy(e,t){return super.copy(e,t),this.matrixWorldInverse.copy(e.matrixWorldInverse),this.projectionMatrix.copy(e.projectionMatrix),this.projectionMatrixInverse.copy(e.projectionMatrixInverse),this.coordinateSystem=e.coordinateSystem,this}getWorldDirection(e){return super.getWorldDirection(e).negate()}updateMatrixWorld(e){super.updateMatrixWorld(e),this.matrixWorldInverse.copy(this.matrixWorld).invert()}updateWorldMatrix(e,t){super.updateWorldMatrix(e,t),this.matrixWorldInverse.copy(this.matrixWorld).invert()}clone(){return new this.constructor().copy(this)}}const xi=new N,yh=new se,xh=new se;class Ut extends Xr{constructor(e=50,t=1,n=.1,i=2e3){super(),this.isPerspectiveCamera=!0,this.type="PerspectiveCamera",this.fov=e,this.zoom=1,this.near=n,this.far=i,this.focus=10,this.aspect=t,this.view=null,this.filmGauge=35,this.filmOffset=0,this.updateProjectionMatrix()}copy(e,t){return super.copy(e,t),this.fov=e.fov,this.zoom=e.zoom,this.near=e.near,this.far=e.far,this.focus=e.focus,this.aspect=e.aspect,this.view=e.view===null?null:Object.assign({},e.view),this.filmGauge=e.filmGauge,this.filmOffset=e.filmOffset,this}setFocalLength(e){const t=.5*this.getFilmHeight()/e;this.fov=Vs*2*Math.atan(t),this.updateProjectionMatrix()}getFocalLength(){const e=Math.tan(ns*.5*this.fov);return .5*this.getFilmHeight()/e}getEffectiveFOV(){return Vs*2*Math.atan(Math.tan(ns*.5*this.fov)/this.zoom)}getFilmWidth(){return this.filmGauge*Math.min(this.aspect,1)}getFilmHeight(){return this.filmGauge/Math.max(this.aspect,1)}getViewBounds(e,t,n){xi.set(-1,-1,.5).applyMatrix4(this.projectionMatrixInverse),t.set(xi.x,xi.y).multiplyScalar(-e/xi.z),xi.set(1,1,.5).applyMatrix4(this.projectionMatrixInverse),n.set(xi.x,xi.y).multiplyScalar(-e/xi.z)}getViewSize(e,t){return this.getViewBounds(e,yh,xh),t.subVectors(xh,yh)}setViewOffset(e,t,n,i,r,o){this.aspect=e/t,this.view===null&&(this.view={enabled:!0,fullWidth:1,fullHeight:1,offsetX:0,offsetY:0,width:1,height:1}),this.view.enabled=!0,this.view.fullWidth=e,this.view.fullHeight=t,this.view.of
varying vec3 vWorldDirection;
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
#include <project_vertex>
}
`,fragmentShader:`
uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include <common>
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
}
`},i=new cs(5,5,5),r=new Ln({name:"CubemapFromEquirect",uniforms:Hs(n.uniforms),vertexShader:n.vertexShader,fragmentShader:n.fragmentShader,side:nn,blending:si});r.uniforms.tEquirect.value=t;const o=new Nt(i,r),a=t.minFilter;return t.minFilter===zn&&(t.minFilter=Ot),new hp(1,10,this).update(e,o),t.minFilter=a,o.geometry.dispose(),o.material.dispose(),this}clear(e,t,n,i){const r=e.getRenderTarget();for(let o=0;o<6;o++)e.setRenderTarget(this,o),e.clear(t,n,i);e.setRenderTarget(r)}}const Tl=new N,Iv=new N,Lv=new Ze;class wi{constructor(e=new N(1,0,0),t=0){this.isPlane=!0,this.normal=e,this.constant=t}set(e,t){return this.normal.copy(e),this.constant=t,this}setComponents(e,t,n,i){return this.normal.set(e,t,n),this.constant=i,this}setFromNormalAndCoplanarPoint(e,t){return this.normal.copy(e),this.constant=-t.dot(this.normal),this}setFromCoplanarPoints(e,t,n){const i=Tl.subVectors(n,t).cross(Iv.subVectors(e,t)).normalize();return this.setFromNormalAndCoplanarPoint(i,e),this}copy(e){return this.normal.copy(e.normal),this.constant=e.constant,this}normalize(){const e=1/this.normal.length();return this.normal.multiplyScalar(e),this.constant*=e,this}negate(){return this.constant*=-1,this.normal.negate(),this}distanceToPoint(e){return this.normal.dot(e)+this.constant}distanceToSphere(e){return this.distanceToPoint(e.center)-e.radius}projectPoint(e,t){return t.copy(e).addScaledVector(this.normal,-this.distanceToPoint(e))}intersectLine(e,t){const n=e.delta(Tl),i=this.normal.dot(n);if(i===0)return this.distanceToPoint(e.start)===0?t.copy(e.start):null;const r=-(e.start.dot(this.normal)+this.constant)/i;return r<0||r>1?null:t.copy(e.start).addScaledVector(n,r)}intersectsLine(e){const t=this.distanceToPoint(e.start),n=this.distanceToPoint(e.end);return t<0&&n>0||n<0&&t>0}intersectsBox(e){return e.intersectsPlane(this)}intersectsSphere(e){return e.intersectsPlane(this)}coplanarPoint(e){return e.copy(this.normal).multiplyScalar(-this.constant)}applyMatrix4(e,t){const n=t||Lv.getNormalMatrix(e),i=this.coplanarPoint(Tl).applyMatrix4(e),r=this.normal.applyMatrix3(n).normalize();return this.constant=-i.dot(r),this}translate(e){return this.constant-=e.dot(this.normal),this}equals(e){return e.normal.equals(this.normal)&&e.constant===this.constant}clone(){return new this.constructor().copy(this)}}const Bi=new Zt,Ao=new N;class Yr{constructor(e=new wi,t=new wi,n=new wi,i=new wi,r=new wi,o=new wi){this.planes=[e,t,n,i,r,o]}set(e,t,n,i,r,o){const a=this.planes;return a[0].copy(e),a[1].copy(t),a[2].copy(n),a[3].copy(i),a[4].copy(r),a[5].copy(o),this}copy(e){const t=this.planes;for(let n=0;n<6;n++)t[n].copy(e.planes[n]);return this}setFromProjectionMatrix(e,t=Vn){const n=this.planes,i=e.elements,r=i[0],o=i[1],a=i[2],l=i[3],c=i[4],u=i[5],h=i[6],d=i[7],f=i[8],g=i[9],v=i[10],m=i[11],p=i[12],y=i[13],_=i[14],x=i[15];if(n[0].setComponents(l-r,d-c,m-f,x-p).normalize(),n[1].setComponents(l+r,d+c,m+f,x+p).normalize(),n[2].setComponents(l+o,d+u,m+g,x+y).normalize(),n[3].setComponents(l-o,d-u,m-g,x-y).normalize(),n[4].setComponents(l-a,d-h,m-v,x-_).normalize(),t===Vn)n[5].setComponents(l+a,d+h,m+v,x+_).normalize();else if(t===Rr)n[5].setComponents(a,h,v,_).normalize();else throw new Error("THREE.Frustum.setFromProjectionMatrix(): Invalid coordinate system: "+t);return this}intersectsObject(e){if(e.boundingSphere!==void 0)e.boundingSphere===null&&e.computeBoundingSphere(),Bi.copy(e.boundingSphere).applyMatrix4(e.matrixWorld);else{const t=e.geometry;t.boundingSphere===null&&t.computeBoundingSphere(),Bi.copy(t.boundingSphere).applyMatrix4(e.matrixWorld)}return this.intersectsSphere(Bi)}intersectsSprite(e){return Bi.center.set(0,0,0),Bi.radius=.7071067811865476,Bi.applyMatrix4(e.matrixWorld),this.intersectsSphere(Bi)}intersectsSphere(e){const t=this.planes,n=e.center,i=-e.radius;for(let r=0;r<6;r++)if(t[r].distanceToPoint(n)<i)return!1;return!0}intersectsBox(e){const t=this.planes;for(let n=0;n<6;n++){const i=t[n];if(Ao.x=i.normal.x>0?e.max.x:e.min.x,Ao.y=i.normal.y>0?e.max.y:e.min.y,Ao.z=i.normal.z>0?e.max.z:e.min.z,i.distanceToPoint(Ao)<0)return!1}return!0}con
if ( diffuseColor.a < getAlphaHashThreshold( vPosition ) ) discard;
#endif`,Uv=`#ifdef USE_ALPHAHASH
const float ALPHA_HASH_SCALE = 0.05;
float hash2D( vec2 value ) {
return fract( 1.0e4 * sin( 17.0 * value.x + 0.1 * value.y ) * ( 0.1 + abs( sin( 13.0 * value.y + value.x ) ) ) );
}
float hash3D( vec3 value ) {
return hash2D( vec2( hash2D( value.xy ), value.z ) );
}
float getAlphaHashThreshold( vec3 position ) {
float maxDeriv = max(
length( dFdx( position.xyz ) ),
length( dFdy( position.xyz ) )
);
float pixScale = 1.0 / ( ALPHA_HASH_SCALE * maxDeriv );
vec2 pixScales = vec2(
exp2( floor( log2( pixScale ) ) ),
exp2( ceil( log2( pixScale ) ) )
);
vec2 alpha = vec2(
hash3D( floor( pixScales.x * position.xyz ) ),
hash3D( floor( pixScales.y * position.xyz ) )
);
float lerpFactor = fract( log2( pixScale ) );
float x = ( 1.0 - lerpFactor ) * alpha.x + lerpFactor * alpha.y;
float a = min( lerpFactor, 1.0 - lerpFactor );
vec3 cases = vec3(
x * x / ( 2.0 * a * ( 1.0 - a ) ),
( x - 0.5 * a ) / ( 1.0 - a ),
1.0 - ( ( 1.0 - x ) * ( 1.0 - x ) / ( 2.0 * a * ( 1.0 - a ) ) )
);
float threshold = ( x < ( 1.0 - a ) )
? ( ( x < a ) ? cases.x : cases.y )
: cases.z;
return clamp( threshold , 1.0e-6, 1.0 );
}
#endif`,Ov=`#ifdef USE_ALPHAMAP
diffuseColor.a *= texture2D( alphaMap, vAlphaMapUv ).g;
#endif`,Fv=`#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif`,kv=`#ifdef USE_ALPHATEST
#ifdef ALPHA_TO_COVERAGE
diffuseColor.a = smoothstep( alphaTest, alphaTest + fwidth( diffuseColor.a ), diffuseColor.a );
if ( diffuseColor.a == 0.0 ) discard;
#else
if ( diffuseColor.a < alphaTest ) discard;
#endif
#endif`,Bv=`#ifdef USE_ALPHATEST
uniform float alphaTest;
#endif`,zv=`#ifdef USE_AOMAP
float ambientOcclusion = ( texture2D( aoMap, vAoMapUv ).r - 1.0 ) * aoMapIntensity + 1.0;
reflectedLight.indirectDiffuse *= ambientOcclusion;
#if defined( USE_CLEARCOAT )
clearcoatSpecularIndirect *= ambientOcclusion;
#endif
#if defined( USE_SHEEN )
sheenSpecularIndirect *= ambientOcclusion;
#endif
#if defined( USE_ENVMAP ) && defined( STANDARD )
float dotNV = saturate( dot( geometryNormal, geometryViewDir ) );
reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );
#endif
#endif`,Vv=`#ifdef USE_AOMAP
uniform sampler2D aoMap;
uniform float aoMapIntensity;
#endif`,Hv=`#ifdef USE_BATCHING
attribute float batchId;
uniform highp sampler2D batchingTexture;
mat4 getBatchingMatrix( const in float i ) {
int size = textureSize( batchingTexture, 0 ).x;
int j = int( i ) * 4;
int x = j % size;
int y = j / size;
vec4 v1 = texelFetch( batchingTexture, ivec2( x, y ), 0 );
vec4 v2 = texelFetch( batchingTexture, ivec2( x + 1, y ), 0 );
vec4 v3 = texelFetch( batchingTexture, ivec2( x + 2, y ), 0 );
vec4 v4 = texelFetch( batchingTexture, ivec2( x + 3, y ), 0 );
return mat4( v1, v2, v3, v4 );
}
#endif
#ifdef USE_BATCHING_COLOR
uniform sampler2D batchingColorTexture;
vec3 getBatchingColor( const in float i ) {
int size = textureSize( batchingColorTexture, 0 ).x;
int j = int( i );
int x = j % size;
int y = j / size;
return texelFetch( batchingColorTexture, ivec2( x, y ), 0 ).rgb;
}
#endif`,Gv=`#ifdef USE_BATCHING
mat4 batchingMatrix = getBatchingMatrix( batchId );
#endif`,Wv=`vec3 transformed = vec3( position );
#ifdef USE_ALPHAHASH
vPosition = vec3( position );
#endif`,$v=`vec3 objectNormal = vec3( normal );
#ifdef USE_TANGENT
vec3 objectTangent = vec3( tangent.xyz );
#endif`,Xv=`float G_BlinnPhong_Implicit( ) {
return 0.25;
}
float D_BlinnPhong( const in float shininess, const in float dotNH ) {
return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );
}
vec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {
vec3 halfDir = normalize( lightDir + viewDir );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );
vec3 F = F_Schlick( specularColor, 1.0, dotVH );
float G = G_BlinnPhong_Implicit( );
float D = D_BlinnPhong( shininess, dotNH );
return F * ( G * D );
} // validated`,qv=`#ifdef USE_IRIDESCENCE
const mat3 XYZ_TO_REC709 = mat3(
3.2404542, -0.9692660, 0.0556434,
-1.5371385, 1.8760108, -0.2040259,
-0.4985314, 0.0415560, 1.0572252
);
vec3 Fresnel0ToIor( vec3 fresnel0 ) {
vec3 sqrtF0 = sqrt( fresnel0 );
return ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );
}
vec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {
return pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );
}
float IorToFresnel0( float transmittedIor, float incidentIor ) {
return pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));
}
vec3 evalSensitivity( float OPD, vec3 shift ) {
float phase = 2.0 * PI * OPD * 1.0e-9;
vec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );
vec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );
vec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );
vec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var );
xyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) );
xyz /= 1.0685e-7;
vec3 rgb = XYZ_TO_REC709 * xyz;
return rgb;
}
vec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {
vec3 I;
float iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );
float sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );
float cosTheta2Sq = 1.0 - sinTheta2Sq;
if ( cosTheta2Sq < 0.0 ) {
return vec3( 1.0 );
}
float cosTheta2 = sqrt( cosTheta2Sq );
float R0 = IorToFresnel0( iridescenceIOR, outsideIOR );
float R12 = F_Schlick( R0, 1.0, cosTheta1 );
float T121 = 1.0 - R12;
float phi12 = 0.0;
if ( iridescenceIOR < outsideIOR ) phi12 = PI;
float phi21 = PI - phi12;
vec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) ); vec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );
vec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );
vec3 phi23 = vec3( 0.0 );
if ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI;
if ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI;
if ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI;
float OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;
vec3 phi = vec3( phi21 ) + phi23;
vec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );
vec3 r123 = sqrt( R123 );
vec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );
vec3 C0 = R12 + Rs;
I = C0;
vec3 Cm = Rs - T121;
for ( int m = 1; m <= 2; ++ m ) {
Cm *= r123;
vec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );
I += Cm * Sm;
}
return max( I, vec3( 0.0 ) );
}
#endif`,Yv=`#ifdef USE_BUMPMAP
uniform sampler2D bumpMap;
uniform float bumpScale;
vec2 dHdxy_fwd() {
vec2 dSTdx = dFdx( vBumpMapUv );
vec2 dSTdy = dFdy( vBumpMapUv );
float Hll = bumpScale * texture2D( bumpMap, vBumpMapUv ).x;
float dBx = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdx ).x - Hll;
float dBy = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdy ).x - Hll;
return vec2( dBx, dBy );
}
vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {
vec3 vSigmaX = normalize( dFdx( surf_pos.xyz ) );
vec3 vSigmaY = normalize( dFdy( surf_pos.xyz ) );
vec3 vN = surf_norm;
vec3 R1 = cross( vSigmaY, vN );
vec3 R2 = cross( vN, vSigmaX );
float fDet = dot( vSigmaX, R1 ) * faceDirection;
vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );
return normalize( abs( fDet ) * surf_norm - vGrad );
}
#endif`,Zv=`#if NUM_CLIPPING_PLANES > 0
vec4 plane;
#ifdef ALPHA_TO_COVERAGE
float distanceToPlane, distanceGradient;
float clipOpacity = 1.0;
#pragma unroll_loop_start
for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
distanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;
distanceGradient = fwidth( distanceToPlane ) / 2.0;
clipOpacity *= smoothstep( - distanceGradient, distanceGradient, distanceToPlane );
if ( clipOpacity == 0.0 ) discard;
}
#pragma unroll_loop_end
#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES
float unionClipOpacity = 1.0;
#pragma unroll_loop_start
for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
distanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;
distanceGradient = fwidth( distanceToPlane ) / 2.0;
unionClipOpacity *= 1.0 - smoothstep( - distanceGradient, distanceGradient, distanceToPlane );
}
#pragma unroll_loop_end
clipOpacity *= 1.0 - unionClipOpacity;
#endif
diffuseColor.a *= clipOpacity;
if ( diffuseColor.a == 0.0 ) discard;
#else
#pragma unroll_loop_start
for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
if ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;
}
#pragma unroll_loop_end
#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES
bool clipped = true;
#pragma unroll_loop_start
for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
clipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;
}
#pragma unroll_loop_end
if ( clipped ) discard;
#endif
#endif
#endif`,Jv=`#if NUM_CLIPPING_PLANES > 0
varying vec3 vClipPosition;
uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];
#endif`,Kv=`#if NUM_CLIPPING_PLANES > 0
varying vec3 vClipPosition;
#endif`,jv=`#if NUM_CLIPPING_PLANES > 0
vClipPosition = - mvPosition.xyz;
#endif`,Qv=`#if defined( USE_COLOR_ALPHA )
diffuseColor *= vColor;
#elif defined( USE_COLOR )
diffuseColor.rgb *= vColor;
#endif`,e_=`#if defined( USE_COLOR_ALPHA )
varying vec4 vColor;
#elif defined( USE_COLOR )
varying vec3 vColor;
#endif`,t_=`#if defined( USE_COLOR_ALPHA )
varying vec4 vColor;
#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )
varying vec3 vColor;
#endif`,n_=`#if defined( USE_COLOR_ALPHA )
vColor = vec4( 1.0 );
#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )
vColor = vec3( 1.0 );
#endif
#ifdef USE_COLOR
vColor *= color;
#endif
#ifdef USE_INSTANCING_COLOR
vColor.xyz *= instanceColor.xyz;
#endif
#ifdef USE_BATCHING_COLOR
vec3 batchingColor = getBatchingColor( batchId );
vColor.xyz *= batchingColor.xyz;
#endif`,i_=`#define PI 3.141592653589793
#define PI2 6.283185307179586
#define PI_HALF 1.5707963267948966
#define RECIPROCAL_PI 0.3183098861837907
#define RECIPROCAL_PI2 0.15915494309189535
#define EPSILON 1e-6
#ifndef saturate
#define saturate( a ) clamp( a, 0.0, 1.0 )
#endif
#define whiteComplement( a ) ( 1.0 - saturate( a ) )
float pow2( const in float x ) { return x*x; }
vec3 pow2( const in vec3 x ) { return x*x; }
float pow3( const in float x ) { return x*x*x; }
float pow4( const in float x ) { float x2 = x*x; return x2*x2; }
float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }
float average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }
highp float rand( const in vec2 uv ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract( sin( sn ) * c );
}
#ifdef HIGH_PRECISION
float precisionSafeLength( vec3 v ) { return length( v ); }
#else
float precisionSafeLength( vec3 v ) {
float maxComponent = max3( abs( v ) );
return length( v / maxComponent ) * maxComponent;
}
#endif
struct IncidentLight {
vec3 color;
vec3 direction;
bool visible;
};
struct ReflectedLight {
vec3 directDiffuse;
vec3 directSpecular;
vec3 indirectDiffuse;
vec3 indirectSpecular;
};
#ifdef USE_ALPHAHASH
varying vec3 vPosition;
#endif
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );
}
mat3 transposeMat3( const in mat3 m ) {
mat3 tmp;
tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
return tmp;
}
float luminance( const in vec3 rgb ) {
const vec3 weights = vec3( 0.2126729, 0.7151522, 0.0721750 );
return dot( weights, rgb );
}
bool isPerspectiveMatrix( mat4 m ) {
return m[ 2 ][ 3 ] == - 1.0;
}
vec2 equirectUv( in vec3 dir ) {
float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;
float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;
return vec2( u, v );
}
vec3 BRDF_Lambert( const in vec3 diffuseColor ) {
return RECIPROCAL_PI * diffuseColor;
}
vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
}
float F_Schlick( const in float f0, const in float f90, const in float dotVH ) {
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
} // validated`,s_=`#ifdef ENVMAP_TYPE_CUBE_UV
#define cubeUV_minMipLevel 4.0
#define cubeUV_minTileSize 16.0
float getFace( vec3 direction ) {
vec3 absDirection = abs( direction );
float face = - 1.0;
if ( absDirection.x > absDirection.z ) {
if ( absDirection.x > absDirection.y )
face = direction.x > 0.0 ? 0.0 : 3.0;
else
face = direction.y > 0.0 ? 1.0 : 4.0;
} else {
if ( absDirection.z > absDirection.y )
face = direction.z > 0.0 ? 2.0 : 5.0;
else
face = direction.y > 0.0 ? 1.0 : 4.0;
}
return face;
}
vec2 getUV( vec3 direction, float face ) {
vec2 uv;
if ( face == 0.0 ) {
uv = vec2( direction.z, direction.y ) / abs( direction.x );
} else if ( face == 1.0 ) {
uv = vec2( - direction.x, - direction.z ) / abs( direction.y );
} else if ( face == 2.0 ) {
uv = vec2( - direction.x, direction.y ) / abs( direction.z );
} else if ( face == 3.0 ) {
uv = vec2( - direction.z, direction.y ) / abs( direction.x );
} else if ( face == 4.0 ) {
uv = vec2( - direction.x, direction.z ) / abs( direction.y );
} else {
uv = vec2( direction.x, direction.y ) / abs( direction.z );
}
return 0.5 * ( uv + 1.0 );
}
vec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {
float face = getFace( direction );
float filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );
mipInt = max( mipInt, cubeUV_minMipLevel );
float faceSize = exp2( mipInt );
highp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;
if ( face > 2.0 ) {
uv.y += faceSize;
face -= 3.0;
}
uv.x += face * faceSize;
uv.x += filterInt * 3.0 * cubeUV_minTileSize;
uv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );
uv.x *= CUBEUV_TEXEL_WIDTH;
uv.y *= CUBEUV_TEXEL_HEIGHT;
#ifdef texture2DGradEXT
return texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;
#else
return texture2D( envMap, uv ).rgb;
#endif
}
#define cubeUV_r0 1.0
#define cubeUV_m0 - 2.0
#define cubeUV_r1 0.8
#define cubeUV_m1 - 1.0
#define cubeUV_r4 0.4
#define cubeUV_m4 2.0
#define cubeUV_r5 0.305
#define cubeUV_m5 3.0
#define cubeUV_r6 0.21
#define cubeUV_m6 4.0
float roughnessToMip( float roughness ) {
float mip = 0.0;
if ( roughness >= cubeUV_r1 ) {
mip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;
} else if ( roughness >= cubeUV_r4 ) {
mip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;
} else if ( roughness >= cubeUV_r5 ) {
mip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;
} else if ( roughness >= cubeUV_r6 ) {
mip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;
} else {
mip = - 2.0 * log2( 1.16 * roughness ); }
return mip;
}
vec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {
float mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );
float mipF = fract( mip );
float mipInt = floor( mip );
vec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );
if ( mipF == 0.0 ) {
return vec4( color0, 1.0 );
} else {
vec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );
return vec4( mix( color0, color1, mipF ), 1.0 );
}
}
#endif`,r_=`vec3 transformedNormal = objectNormal;
#ifdef USE_TANGENT
vec3 transformedTangent = objectTangent;
#endif
#ifdef USE_BATCHING
mat3 bm = mat3( batchingMatrix );
transformedNormal /= vec3( dot( bm[ 0 ], bm[ 0 ] ), dot( bm[ 1 ], bm[ 1 ] ), dot( bm[ 2 ], bm[ 2 ] ) );
transformedNormal = bm * transformedNormal;
#ifdef USE_TANGENT
transformedTangent = bm * transformedTangent;
#endif
#endif
#ifdef USE_INSTANCING
mat3 im = mat3( instanceMatrix );
transformedNormal /= vec3( dot( im[ 0 ], im[ 0 ] ), dot( im[ 1 ], im[ 1 ] ), dot( im[ 2 ], im[ 2 ] ) );
transformedNormal = im * transformedNormal;
#ifdef USE_TANGENT
transformedTangent = im * transformedTangent;
#endif
#endif
transformedNormal = normalMatrix * transformedNormal;
#ifdef FLIP_SIDED
transformedNormal = - transformedNormal;
#endif
#ifdef USE_TANGENT
transformedTangent = ( modelViewMatrix * vec4( transformedTangent, 0.0 ) ).xyz;
#ifdef FLIP_SIDED
transformedTangent = - transformedTangent;
#endif
#endif`,o_=`#ifdef USE_DISPLACEMENTMAP
uniform sampler2D displacementMap;
uniform float displacementScale;
uniform float displacementBias;
#endif`,a_=`#ifdef USE_DISPLACEMENTMAP
transformed += normalize( objectNormal ) * ( texture2D( displacementMap, vDisplacementMapUv ).x * displacementScale + displacementBias );
#endif`,l_=`#ifdef USE_EMISSIVEMAP
vec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );
totalEmissiveRadiance *= emissiveColor.rgb;
#endif`,c_=`#ifdef USE_EMISSIVEMAP
uniform sampler2D emissiveMap;
#endif`,u_="gl_FragColor = linearToOutputTexel( gl_FragColor );",h_=`
const mat3 LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = mat3(
vec3( 0.8224621, 0.177538, 0.0 ),
vec3( 0.0331941, 0.9668058, 0.0 ),
vec3( 0.0170827, 0.0723974, 0.9105199 )
);
const mat3 LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = mat3(
vec3( 1.2249401, - 0.2249404, 0.0 ),
vec3( - 0.0420569, 1.0420571, 0.0 ),
vec3( - 0.0196376, - 0.0786361, 1.0982735 )
);
vec4 LinearSRGBToLinearDisplayP3( in vec4 value ) {
return vec4( value.rgb * LINEAR_SRGB_TO_LINEAR_DISPLAY_P3, value.a );
}
vec4 LinearDisplayP3ToLinearSRGB( in vec4 value ) {
return vec4( value.rgb * LINEAR_DISPLAY_P3_TO_LINEAR_SRGB, value.a );
}
vec4 LinearTransferOETF( in vec4 value ) {
return value;
}
vec4 sRGBTransferOETF( in vec4 value ) {
return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );
}
vec4 LinearToLinear( in vec4 value ) {
return value;
}
vec4 LinearTosRGB( in vec4 value ) {
return sRGBTransferOETF( value );
}`,d_=`#ifdef USE_ENVMAP
#ifdef ENV_WORLDPOS
vec3 cameraToFrag;
if ( isOrthographic ) {
cameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );
} else {
cameraToFrag = normalize( vWorldPosition - cameraPosition );
}
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
#ifdef ENVMAP_MODE_REFLECTION
vec3 reflectVec = reflect( cameraToFrag, worldNormal );
#else
vec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );
#endif
#else
vec3 reflectVec = vReflect;
#endif
#ifdef ENVMAP_TYPE_CUBE
vec4 envColor = textureCube( envMap, envMapRotation * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );
#else
vec4 envColor = vec4( 0.0 );
#endif
#ifdef ENVMAP_BLENDING_MULTIPLY
outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_MIX )
outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_ADD )
outgoingLight += envColor.xyz * specularStrength * reflectivity;
#endif
#endif`,f_=`#ifdef USE_ENVMAP
uniform float envMapIntensity;
uniform float flipEnvMap;
uniform mat3 envMapRotation;
#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#else
uniform sampler2D envMap;
#endif
#endif`,p_=`#ifdef USE_ENVMAP
uniform float reflectivity;
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )
#define ENV_WORLDPOS
#endif
#ifdef ENV_WORLDPOS
varying vec3 vWorldPosition;
uniform float refractionRatio;
#else
varying vec3 vReflect;
#endif
#endif`,m_=`#ifdef USE_ENVMAP
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )
#define ENV_WORLDPOS
#endif
#ifdef ENV_WORLDPOS
varying vec3 vWorldPosition;
#else
varying vec3 vReflect;
uniform float refractionRatio;
#endif
#endif`,g_=`#ifdef USE_ENVMAP
#ifdef ENV_WORLDPOS
vWorldPosition = worldPosition.xyz;
#else
vec3 cameraToVertex;
if ( isOrthographic ) {
cameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );
} else {
cameraToVertex = normalize( worldPosition.xyz - cameraPosition );
}
vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );
#ifdef ENVMAP_MODE_REFLECTION
vReflect = reflect( cameraToVertex, worldNormal );
#else
vReflect = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#endif
#endif`,v_=`#ifdef USE_FOG
vFogDepth = - mvPosition.z;
#endif`,__=`#ifdef USE_FOG
varying float vFogDepth;
#endif`,y_=`#ifdef USE_FOG
#ifdef FOG_EXP2
float fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );
#else
float fogFactor = smoothstep( fogNear, fogFar, vFogDepth );
#endif
gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );
#endif`,x_=`#ifdef USE_FOG
uniform vec3 fogColor;
varying float vFogDepth;
#ifdef FOG_EXP2
uniform float fogDensity;
#else
uniform float fogNear;
uniform float fogFar;
#endif
#endif`,M_=`#ifdef USE_GRADIENTMAP
uniform sampler2D gradientMap;
#endif
vec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {
float dotNL = dot( normal, lightDirection );
vec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );
#ifdef USE_GRADIENTMAP
return vec3( texture2D( gradientMap, coord ).r );
#else
vec2 fw = fwidth( coord ) * 0.5;
return mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( 0.7 - fw.x, 0.7 + fw.x, coord.x ) );
#endif
}`,b_=`#ifdef USE_LIGHTMAP
uniform sampler2D lightMap;
uniform float lightMapIntensity;
#endif`,S_=`LambertMaterial material;
material.diffuseColor = diffuseColor.rgb;
material.specularStrength = specularStrength;`,w_=`varying vec3 vViewPosition;
struct LambertMaterial {
vec3 diffuseColor;
float specularStrength;
};
void RE_Direct_Lambert( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {
float dotNL = saturate( dot( geometryNormal, directLight.direction ) );
vec3 irradiance = dotNL * directLight.color;
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectDiffuse_Lambert( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
#define RE_Direct RE_Direct_Lambert
#define RE_IndirectDiffuse RE_IndirectDiffuse_Lambert`,A_=`uniform bool receiveShadow;
uniform vec3 ambientLightColor;
#if defined( USE_LIGHT_PROBES )
uniform vec3 lightProbe[ 9 ];
#endif
vec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {
float x = normal.x, y = normal.y, z = normal.z;
vec3 result = shCoefficients[ 0 ] * 0.886227;
result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;
result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;
result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;
result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;
result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;
result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );
result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;
result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );
return result;
}
vec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );
return irradiance;
}
vec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {
vec3 irradiance = ambientLightColor;
return irradiance;
}
float getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {
float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );
if ( cutoffDistance > 0.0 ) {
distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );
}
return distanceFalloff;
}
float getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {
return smoothstep( coneCosine, penumbraCosine, angleCosine );
}
#if NUM_DIR_LIGHTS > 0
struct DirectionalLight {
vec3 direction;
vec3 color;
};
uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];
void getDirectionalLightInfo( const in DirectionalLight directionalLight, out IncidentLight light ) {
light.color = directionalLight.color;
light.direction = directionalLight.direction;
light.visible = true;
}
#endif
#if NUM_POINT_LIGHTS > 0
struct PointLight {
vec3 position;
vec3 color;
float distance;
float decay;
};
uniform PointLight pointLights[ NUM_POINT_LIGHTS ];
void getPointLightInfo( const in PointLight pointLight, const in vec3 geometryPosition, out IncidentLight light ) {
vec3 lVector = pointLight.position - geometryPosition;
light.direction = normalize( lVector );
float lightDistance = length( lVector );
light.color = pointLight.color;
light.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );
light.visible = ( light.color != vec3( 0.0 ) );
}
#endif
#if NUM_SPOT_LIGHTS > 0
struct SpotLight {
vec3 position;
vec3 direction;
vec3 color;
float distance;
float decay;
float coneCos;
float penumbraCos;
};
uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];
void getSpotLightInfo( const in SpotLight spotLight, const in vec3 geometryPosition, out IncidentLight light ) {
vec3 lVector = spotLight.position - geometryPosition;
light.direction = normalize( lVector );
float angleCos = dot( light.direction, spotLight.direction );
float spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );
if ( spotAttenuation > 0.0 ) {
float lightDistance = length( lVector );
light.color = spotLight.color * spotAttenuation;
light.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );
light.visible = ( light.color != vec3( 0.0 ) );
} else {
light.color = vec3( 0.0 );
light.visible = false;
}
}
#endif
#if NUM_RECT_AREA_LIGHTS > 0
struct RectAreaLight {
vec3 color;
vec3 position;
vec3 halfWidth;
vec3 halfHeight;
};
uniform sampler2D ltc_1; uniform sampler2D ltc_2;
uniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];
#endif
#if NUM_HEMI_LIGHTS > 0
struct HemisphereLight {
vec3 direction;
vec3 skyColor;
vec3 groundColor;
};
uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];
vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {
float dotNL = dot( normal, hemiLight.direction );
float hemiDiffuseWeight = 0.5 * dotNL + 0.5;
vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );
return irradiance;
}
#endif`,T_=`#ifdef USE_ENVMAP
vec3 getIBLIrradiance( const in vec3 normal ) {
#ifdef ENVMAP_TYPE_CUBE_UV
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
vec4 envMapColor = textureCubeUV( envMap, envMapRotation * worldNormal, 1.0 );
return PI * envMapColor.rgb * envMapIntensity;
#else
return vec3( 0.0 );
#endif
}
vec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {
#ifdef ENVMAP_TYPE_CUBE_UV
vec3 reflectVec = reflect( - viewDir, normal );
reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );
reflectVec = inverseTransformDirection( reflectVec, viewMatrix );
vec4 envMapColor = textureCubeUV( envMap, envMapRotation * reflectVec, roughness );
return envMapColor.rgb * envMapIntensity;
#else
return vec3( 0.0 );
#endif
}
#ifdef USE_ANISOTROPY
vec3 getIBLAnisotropyRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in vec3 bitangent, const in float anisotropy ) {
#ifdef ENVMAP_TYPE_CUBE_UV
vec3 bentNormal = cross( bitangent, viewDir );
bentNormal = normalize( cross( bentNormal, bitangent ) );
bentNormal = normalize( mix( bentNormal, normal, pow2( pow2( 1.0 - anisotropy * ( 1.0 - roughness ) ) ) ) );
return getIBLRadiance( viewDir, bentNormal, roughness );
#else
return vec3( 0.0 );
#endif
}
#endif
#endif`,E_=`ToonMaterial material;
material.diffuseColor = diffuseColor.rgb;`,C_=`varying vec3 vViewPosition;
struct ToonMaterial {
vec3 diffuseColor;
};
void RE_Direct_Toon( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {
vec3 irradiance = getGradientIrradiance( geometryNormal, directLight.direction ) * directLight.color;
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
#define RE_Direct RE_Direct_Toon
#define RE_IndirectDiffuse RE_IndirectDiffuse_Toon`,P_=`BlinnPhongMaterial material;
material.diffuseColor = diffuseColor.rgb;
material.specularColor = specular;
material.specularShininess = shininess;
material.specularStrength = specularStrength;`,R_=`varying vec3 vViewPosition;
struct BlinnPhongMaterial {
vec3 diffuseColor;
vec3 specularColor;
float specularShininess;
float specularStrength;
};
void RE_Direct_BlinnPhong( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
float dotNL = saturate( dot( geometryNormal, directLight.direction ) );
vec3 irradiance = dotNL * directLight.color;
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
reflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometryViewDir, geometryNormal, material.specularColor, material.specularShininess ) * material.specularStrength;
}
void RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
#define RE_Direct RE_Direct_BlinnPhong
#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong`,I_=`PhysicalMaterial material;
material.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );
vec3 dxy = max( abs( dFdx( nonPerturbedNormal ) ), abs( dFdy( nonPerturbedNormal ) ) );
float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );
material.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;
material.roughness = min( material.roughness, 1.0 );
#ifdef IOR
material.ior = ior;
#ifdef USE_SPECULAR
float specularIntensityFactor = specularIntensity;
vec3 specularColorFactor = specularColor;
#ifdef USE_SPECULAR_COLORMAP
specularColorFactor *= texture2D( specularColorMap, vSpecularColorMapUv ).rgb;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
specularIntensityFactor *= texture2D( specularIntensityMap, vSpecularIntensityMapUv ).a;
#endif
material.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );
#else
float specularIntensityFactor = 1.0;
vec3 specularColorFactor = vec3( 1.0 );
material.specularF90 = 1.0;
#endif
material.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );
#else
material.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );
material.specularF90 = 1.0;
#endif
#ifdef USE_CLEARCOAT
material.clearcoat = clearcoat;
material.clearcoatRoughness = clearcoatRoughness;
material.clearcoatF0 = vec3( 0.04 );
material.clearcoatF90 = 1.0;
#ifdef USE_CLEARCOATMAP
material.clearcoat *= texture2D( clearcoatMap, vClearcoatMapUv ).x;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
material.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vClearcoatRoughnessMapUv ).y;
#endif
material.clearcoat = saturate( material.clearcoat ); material.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );
material.clearcoatRoughness += geometryRoughness;
material.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );
#endif
#ifdef USE_DISPERSION
material.dispersion = dispersion;
#endif
#ifdef USE_IRIDESCENCE
material.iridescence = iridescence;
material.iridescenceIOR = iridescenceIOR;
#ifdef USE_IRIDESCENCEMAP
material.iridescence *= texture2D( iridescenceMap, vIridescenceMapUv ).r;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
material.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vIridescenceThicknessMapUv ).g + iridescenceThicknessMinimum;
#else
material.iridescenceThickness = iridescenceThicknessMaximum;
#endif
#endif
#ifdef USE_SHEEN
material.sheenColor = sheenColor;
#ifdef USE_SHEEN_COLORMAP
material.sheenColor *= texture2D( sheenColorMap, vSheenColorMapUv ).rgb;
#endif
material.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );
#ifdef USE_SHEEN_ROUGHNESSMAP
material.sheenRoughness *= texture2D( sheenRoughnessMap, vSheenRoughnessMapUv ).a;
#endif
#endif
#ifdef USE_ANISOTROPY
#ifdef USE_ANISOTROPYMAP
mat2 anisotropyMat = mat2( anisotropyVector.x, anisotropyVector.y, - anisotropyVector.y, anisotropyVector.x );
vec3 anisotropyPolar = texture2D( anisotropyMap, vAnisotropyMapUv ).rgb;
vec2 anisotropyV = anisotropyMat * normalize( 2.0 * anisotropyPolar.rg - vec2( 1.0 ) ) * anisotropyPolar.b;
#else
vec2 anisotropyV = anisotropyVector;
#endif
material.anisotropy = length( anisotropyV );
if( material.anisotropy == 0.0 ) {
anisotropyV = vec2( 1.0, 0.0 );
} else {
anisotropyV /= material.anisotropy;
material.anisotropy = saturate( material.anisotropy );
}
material.alphaT = mix( pow2( material.roughness ), 1.0, pow2( material.anisotropy ) );
material.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;
material.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;
#endif`,L_=`struct PhysicalMaterial {
vec3 diffuseColor;
float roughness;
vec3 specularColor;
float specularF90;
float dispersion;
#ifdef USE_CLEARCOAT
float clearcoat;
float clearcoatRoughness;
vec3 clearcoatF0;
float clearcoatF90;
#endif
#ifdef USE_IRIDESCENCE
float iridescence;
float iridescenceIOR;
float iridescenceThickness;
vec3 iridescenceFresnel;
vec3 iridescenceF0;
#endif
#ifdef USE_SHEEN
vec3 sheenColor;
float sheenRoughness;
#endif
#ifdef IOR
float ior;
#endif
#ifdef USE_TRANSMISSION
float transmission;
float transmissionAlpha;
float thickness;
float attenuationDistance;
vec3 attenuationColor;
#endif
#ifdef USE_ANISOTROPY
float anisotropy;
float alphaT;
vec3 anisotropyT;
vec3 anisotropyB;
#endif
};
vec3 clearcoatSpecularDirect = vec3( 0.0 );
vec3 clearcoatSpecularIndirect = vec3( 0.0 );
vec3 sheenSpecularDirect = vec3( 0.0 );
vec3 sheenSpecularIndirect = vec3(0.0 );
vec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {
float x = clamp( 1.0 - dotVH, 0.0, 1.0 );
float x2 = x * x;
float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );
return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );
}
float V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {
float a2 = pow2( alpha );
float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );
return 0.5 / max( gv + gl, EPSILON );
}
float D_GGX( const in float alpha, const in float dotNH ) {
float a2 = pow2( alpha );
float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;
return RECIPROCAL_PI * a2 / pow2( denom );
}
#ifdef USE_ANISOTROPY
float V_GGX_SmithCorrelated_Anisotropic( const in float alphaT, const in float alphaB, const in float dotTV, const in float dotBV, const in float dotTL, const in float dotBL, const in float dotNV, const in float dotNL ) {
float gv = dotNL * length( vec3( alphaT * dotTV, alphaB * dotBV, dotNV ) );
float gl = dotNV * length( vec3( alphaT * dotTL, alphaB * dotBL, dotNL ) );
float v = 0.5 / ( gv + gl );
return saturate(v);
}
float D_GGX_Anisotropic( const in float alphaT, const in float alphaB, const in float dotNH, const in float dotTH, const in float dotBH ) {
float a2 = alphaT * alphaB;
highp vec3 v = vec3( alphaB * dotTH, alphaT * dotBH, a2 * dotNH );
highp float v2 = dot( v, v );
float w2 = a2 / v2;
return RECIPROCAL_PI * a2 * pow2 ( w2 );
}
#endif
#ifdef USE_CLEARCOAT
vec3 BRDF_GGX_Clearcoat( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material) {
vec3 f0 = material.clearcoatF0;
float f90 = material.clearcoatF90;
float roughness = material.clearcoatRoughness;
float alpha = pow2( roughness );
vec3 halfDir = normalize( lightDir + viewDir );
float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );
vec3 F = F_Schlick( f0, f90, dotVH );
float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );
float D = D_GGX( alpha, dotNH );
return F * ( V * D );
}
#endif
vec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {
vec3 f0 = material.specularColor;
float f90 = material.specularF90;
float roughness = material.roughness;
float alpha = pow2( roughness );
vec3 halfDir = normalize( lightDir + viewDir );
float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );
vec3 F = F_Schlick( f0, f90, dotVH );
#ifdef USE_IRIDESCENCE
F = mix( F, material.iridescenceFresnel, material.iridescence );
#endif
#ifdef USE_ANISOTROPY
float dotTL = dot( material.anisotropyT, lightDir );
float dotTV = dot( material.anisotropyT, viewDir );
float dotTH = dot( material.anisotropyT, halfDir );
float dotBL = dot( material.anisotropyB, lightDir );
float dotBV = dot( material.anisotropyB, viewDir );
float dotBH = dot( material.anisotropyB, halfDir );
float V = V_GGX_SmithCorrelated_Anisotropic( material.alphaT, alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL );
float D = D_GGX_Anisotropic( material.alphaT, alpha, dotNH, dotTH, dotBH );
#else
float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );
float D = D_GGX( alpha, dotNH );
#endif
return F * ( V * D );
}
vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {
const float LUT_SIZE = 64.0;
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const float LUT_BIAS = 0.5 / LUT_SIZE;
float dotNV = saturate( dot( N, V ) );
vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );
uv = uv * LUT_SCALE + LUT_BIAS;
return uv;
}
float LTC_ClippedSphereFormFactor( const in vec3 f ) {
float l = length( f );
return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );
}
vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {
float x = dot( v1, v2 );
float y = abs( x );
float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;
float b = 3.4175940 + ( 4.1616724 + y ) * y;
float v = a / b;
float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;
return cross( v1, v2 ) * theta_sintheta;
}
vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {
vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];
vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];
vec3 lightNormal = cross( v1, v2 );
if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );
vec3 T1, T2;
T1 = normalize( V - N * dot( V, N ) );
T2 = - cross( N, T1 );
mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );
vec3 coords[ 4 ];
coords[ 0 ] = mat * ( rectCoords[ 0 ] - P );
coords[ 1 ] = mat * ( rectCoords[ 1 ] - P );
coords[ 2 ] = mat * ( rectCoords[ 2 ] - P );
coords[ 3 ] = mat * ( rectCoords[ 3 ] - P );
coords[ 0 ] = normalize( coords[ 0 ] );
coords[ 1 ] = normalize( coords[ 1 ] );
coords[ 2 ] = normalize( coords[ 2 ] );
coords[ 3 ] = normalize( coords[ 3 ] );
vec3 vectorFormFactor = vec3( 0.0 );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );
float result = LTC_ClippedSphereFormFactor( vectorFormFactor );
return vec3( result );
}
#if defined( USE_SHEEN )
float D_Charlie( float roughness, float dotNH ) {
float alpha = pow2( roughness );
float invAlpha = 1.0 / alpha;
float cos2h = dotNH * dotNH;
float sin2h = max( 1.0 - cos2h, 0.0078125 );
return ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );
}
float V_Neubelt( float dotNV, float dotNL ) {
return saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );
}
vec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {
vec3 halfDir = normalize( lightDir + viewDir );
float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float D = D_Charlie( sheenRoughness, dotNH );
float V = V_Neubelt( dotNV, dotNL );
return sheenColor * ( D * V );
}
#endif
float IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {
float dotNV = saturate( dot( normal, viewDir ) );
float r2 = roughness * roughness;
float a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;
float b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;
float DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );
return saturate( DG * RECIPROCAL_PI );
}
vec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {
float dotNV = saturate( dot( normal, viewDir ) );
const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );
const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );
vec4 r = roughness * c0 + c1;
float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;
vec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;
return fab;
}
vec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {
vec2 fab = DFGApprox( normal, viewDir, roughness );
return specularColor * fab.x + specularF90 * fab.y;
}
#ifdef USE_IRIDESCENCE
void computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {
#else
void computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {
#endif
vec2 fab = DFGApprox( normal, viewDir, roughness );
#ifdef USE_IRIDESCENCE
vec3 Fr = mix( specularColor, iridescenceF0, iridescence );
#else
vec3 Fr = specularColor;
#endif
vec3 FssEss = Fr * fab.x + specularF90 * fab.y;
float Ess = fab.x + fab.y;
float Ems = 1.0 - Ess;
vec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619; vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );
singleScatter += FssEss;
multiScatter += Fms * Ems;
}
#if NUM_RECT_AREA_LIGHTS > 0
void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {
vec3 normal = geometryNormal;
vec3 viewDir = geometryViewDir;
vec3 position = geometryPosition;
vec3 lightPos = rectAreaLight.position;
vec3 halfWidth = rectAreaLight.halfWidth;
vec3 halfHeight = rectAreaLight.halfHeight;
vec3 lightColor = rectAreaLight.color;
float roughness = material.roughness;
vec3 rectCoords[ 4 ];
rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; rectCoords[ 1 ] = lightPos - halfWidth - halfHeight;
rectCoords[ 2 ] = lightPos - halfWidth + halfHeight;
rectCoords[ 3 ] = lightPos + halfWidth + halfHeight;
vec2 uv = LTC_Uv( normal, viewDir, roughness );
vec4 t1 = texture2D( ltc_1, uv );
vec4 t2 = texture2D( ltc_2, uv );
mat3 mInv = mat3(
vec3( t1.x, 0, t1.y ),
vec3( 0, 1, 0 ),
vec3( t1.z, 0, t1.w )
);
vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );
reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );
reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );
}
#endif
void RE_Direct_Physical( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {
float dotNL = saturate( dot( geometryNormal, directLight.direction ) );
vec3 irradiance = dotNL * directLight.color;
#ifdef USE_CLEARCOAT
float dotNLcc = saturate( dot( geometryClearcoatNormal, directLight.direction ) );
vec3 ccIrradiance = dotNLcc * directLight.color;
clearcoatSpecularDirect += ccIrradiance * BRDF_GGX_Clearcoat( directLight.direction, geometryViewDir, geometryClearcoatNormal, material );
#endif
#ifdef USE_SHEEN
sheenSpecularDirect += irradiance * BRDF_Sheen( directLight.direction, geometryViewDir, geometryNormal, material.sheenColor, material.sheenRoughness );
#endif
reflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometryViewDir, geometryNormal, material );
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {
#ifdef USE_CLEARCOAT
clearcoatSpecularIndirect += clearcoatRadiance * EnvironmentBRDF( geometryClearcoatNormal, geometryViewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );
#endif
#ifdef USE_SHEEN
sheenSpecularIndirect += irradiance * material.sheenColor * IBLSheenBRDF( geometryNormal, geometryViewDir, material.sheenRoughness );
#endif
vec3 singleScattering = vec3( 0.0 );
vec3 multiScattering = vec3( 0.0 );
vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;
#ifdef USE_IRIDESCENCE
computeMultiscatteringIridescence( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );
#else
computeMultiscattering( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );
#endif
vec3 totalScattering = singleScattering + multiScattering;
vec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );
reflectedLight.indirectSpecular += radiance * singleScattering;
reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;
reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;
}
#define RE_Direct RE_Direct_Physical
#define RE_Direct_RectArea RE_Direct_RectArea_Physical
#define RE_IndirectDiffuse RE_IndirectDiffuse_Physical
#define RE_IndirectSpecular RE_IndirectSpecular_Physical
float computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {
return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );
}`,N_=`
vec3 geometryPosition = - vViewPosition;
vec3 geometryNormal = normal;
vec3 geometryViewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );
vec3 geometryClearcoatNormal = vec3( 0.0 );
#ifdef USE_CLEARCOAT
geometryClearcoatNormal = clearcoatNormal;
#endif
#ifdef USE_IRIDESCENCE
float dotNVi = saturate( dot( normal, geometryViewDir ) );
if ( material.iridescenceThickness == 0.0 ) {
material.iridescence = 0.0;
} else {
material.iridescence = saturate( material.iridescence );
}
if ( material.iridescence > 0.0 ) {
material.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );
material.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );
}
#endif
IncidentLight directLight;
#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )
PointLight pointLight;
#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0
PointLightShadow pointLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {
pointLight = pointLights[ i ];
getPointLightInfo( pointLight, geometryPosition, directLight );
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )
pointLightShadow = pointLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;
#endif
RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )
SpotLight spotLight;
vec4 spotColor;
vec3 spotLightCoord;
bool inSpotLightMap;
#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0
SpotLightShadow spotLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {
spotLight = spotLights[ i ];
getSpotLightInfo( spotLight, geometryPosition, directLight );
#if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )
#define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX
#elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
#define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS
#else
#define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )
#endif
#if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )
spotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;
inSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );
spotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );
directLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;
#endif
#undef SPOT_LIGHT_MAP_INDEX
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
spotLightShadow = spotLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;
#endif
RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )
DirectionalLight directionalLight;
#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0
DirectionalLightShadow directionalLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {
directionalLight = directionalLights[ i ];
getDirectionalLightInfo( directionalLight, directLight );
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )
directionalLightShadow = directionalLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;
#endif
RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )
RectAreaLight rectAreaLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {
rectAreaLight = rectAreaLights[ i ];
RE_Direct_RectArea( rectAreaLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if defined( RE_IndirectDiffuse )
vec3 iblIrradiance = vec3( 0.0 );
vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );
#if defined( USE_LIGHT_PROBES )
irradiance += getLightProbeIrradiance( lightProbe, geometryNormal );
#endif
#if ( NUM_HEMI_LIGHTS > 0 )
#pragma unroll_loop_start
for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {
irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometryNormal );
}
#pragma unroll_loop_end
#endif
#endif
#if defined( RE_IndirectSpecular )
vec3 radiance = vec3( 0.0 );
vec3 clearcoatRadiance = vec3( 0.0 );
#endif`,D_=`#if defined( RE_IndirectDiffuse )
#ifdef USE_LIGHTMAP
vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );
vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;
irradiance += lightMapIrradiance;
#endif
#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )
iblIrradiance += getIBLIrradiance( geometryNormal );
#endif
#endif
#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )
#ifdef USE_ANISOTROPY
radiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );
#else
radiance += getIBLRadiance( geometryViewDir, geometryNormal, material.roughness );
#endif
#ifdef USE_CLEARCOAT
clearcoatRadiance += getIBLRadiance( geometryViewDir, geometryClearcoatNormal, material.clearcoatRoughness );
#endif
#endif`,U_=`#if defined( RE_IndirectDiffuse )
RE_IndirectDiffuse( irradiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
#endif
#if defined( RE_IndirectSpecular )
RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
#endif`,O_=`#if defined( USE_LOGDEPTHBUF )
gl_FragDepth = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;
#endif`,F_=`#if defined( USE_LOGDEPTHBUF )
uniform float logDepthBufFC;
varying float vFragDepth;
varying float vIsPerspective;
#endif`,k_=`#ifdef USE_LOGDEPTHBUF
varying float vFragDepth;
varying float vIsPerspective;
#endif`,B_=`#ifdef USE_LOGDEPTHBUF
vFragDepth = 1.0 + gl_Position.w;
vIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );
#endif`,z_=`#ifdef USE_MAP
vec4 sampledDiffuseColor = texture2D( map, vMapUv );
#ifdef DECODE_VIDEO_TEXTURE
sampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w );
#endif
diffuseColor *= sampledDiffuseColor;
#endif`,V_=`#ifdef USE_MAP
uniform sampler2D map;
#endif`,H_=`#if defined( USE_MAP ) || defined( USE_ALPHAMAP )
#if defined( USE_POINTS_UV )
vec2 uv = vUv;
#else
vec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;
#endif
#endif
#ifdef USE_MAP
diffuseColor *= texture2D( map, uv );
#endif
#ifdef USE_ALPHAMAP
diffuseColor.a *= texture2D( alphaMap, uv ).g;
#endif`,G_=`#if defined( USE_POINTS_UV )
varying vec2 vUv;
#else
#if defined( USE_MAP ) || defined( USE_ALPHAMAP )
uniform mat3 uvTransform;
#endif
#endif
#ifdef USE_MAP
uniform sampler2D map;
#endif
#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif`,W_=`float metalnessFactor = metalness;
#ifdef USE_METALNESSMAP
vec4 texelMetalness = texture2D( metalnessMap, vMetalnessMapUv );
metalnessFactor *= texelMetalness.b;
#endif`,$_=`#ifdef USE_METALNESSMAP
uniform sampler2D metalnessMap;
#endif`,X_=`#ifdef USE_INSTANCING_MORPH
float morphTargetInfluences[ MORPHTARGETS_COUNT ];
float morphTargetBaseInfluence = texelFetch( morphTexture, ivec2( 0, gl_InstanceID ), 0 ).r;
for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {
morphTargetInfluences[i] = texelFetch( morphTexture, ivec2( i + 1, gl_InstanceID ), 0 ).r;
}
#endif`,q_=`#if defined( USE_MORPHCOLORS )
vColor *= morphTargetBaseInfluence;
for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {
#if defined( USE_COLOR_ALPHA )
if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];
#elif defined( USE_COLOR )
if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];
#endif
}
#endif`,Y_=`#ifdef USE_MORPHNORMALS
objectNormal *= morphTargetBaseInfluence;
for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {
if ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];
}
#endif`,Z_=`#ifdef USE_MORPHTARGETS
#ifndef USE_INSTANCING_MORPH
uniform float morphTargetBaseInfluence;
uniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];
#endif
uniform sampler2DArray morphTargetsTexture;
uniform ivec2 morphTargetsTextureSize;
vec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {
int texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;
int y = texelIndex / morphTargetsTextureSize.x;
int x = texelIndex - y * morphTargetsTextureSize.x;
ivec3 morphUV = ivec3( x, y, morphTargetIndex );
return texelFetch( morphTargetsTexture, morphUV, 0 );
}
#endif`,J_=`#ifdef USE_MORPHTARGETS
transformed *= morphTargetBaseInfluence;
for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {
if ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];
}
#endif`,K_=`float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;
#ifdef FLAT_SHADED
vec3 fdx = dFdx( vViewPosition );
vec3 fdy = dFdy( vViewPosition );
vec3 normal = normalize( cross( fdx, fdy ) );
#else
vec3 normal = normalize( vNormal );
#ifdef DOUBLE_SIDED
normal *= faceDirection;
#endif
#endif
#if defined( USE_NORMALMAP_TANGENTSPACE ) || defined( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY )
#ifdef USE_TANGENT
mat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );
#else
mat3 tbn = getTangentFrame( - vViewPosition, normal,
#if defined( USE_NORMALMAP )
vNormalMapUv
#elif defined( USE_CLEARCOAT_NORMALMAP )
vClearcoatNormalMapUv
#else
vUv
#endif
);
#endif
#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )
tbn[0] *= faceDirection;
tbn[1] *= faceDirection;
#endif
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
#ifdef USE_TANGENT
mat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );
#else
mat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );
#endif
#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )
tbn2[0] *= faceDirection;
tbn2[1] *= faceDirection;
#endif
#endif
vec3 nonPerturbedNormal = normal;`,j_=`#ifdef USE_NORMALMAP_OBJECTSPACE
normal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;
#ifdef FLIP_SIDED
normal = - normal;
#endif
#ifdef DOUBLE_SIDED
normal = normal * faceDirection;
#endif
normal = normalize( normalMatrix * normal );
#elif defined( USE_NORMALMAP_TANGENTSPACE )
vec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;
mapN.xy *= normalScale;
normal = normalize( tbn * mapN );
#elif defined( USE_BUMPMAP )
normal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );
#endif`,Q_=`#ifndef FLAT_SHADED
varying vec3 vNormal;
#ifdef USE_TANGENT
varying vec3 vTangent;
varying vec3 vBitangent;
#endif
#endif`,e0=`#ifndef FLAT_SHADED
varying vec3 vNormal;
#ifdef USE_TANGENT
varying vec3 vTangent;
varying vec3 vBitangent;
#endif
#endif`,t0=`#ifndef FLAT_SHADED
vNormal = normalize( transformedNormal );
#ifdef USE_TANGENT
vTangent = normalize( transformedTangent );
vBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );
#endif
#endif`,n0=`#ifdef USE_NORMALMAP
uniform sampler2D normalMap;
uniform vec2 normalScale;
#endif
#ifdef USE_NORMALMAP_OBJECTSPACE
uniform mat3 normalMatrix;
#endif
#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY ) )
mat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {
vec3 q0 = dFdx( eye_pos.xyz );
vec3 q1 = dFdy( eye_pos.xyz );
vec2 st0 = dFdx( uv.st );
vec2 st1 = dFdy( uv.st );
vec3 N = surf_norm;
vec3 q1perp = cross( q1, N );
vec3 q0perp = cross( N, q0 );
vec3 T = q1perp * st0.x + q0perp * st1.x;
vec3 B = q1perp * st0.y + q0perp * st1.y;
float det = max( dot( T, T ), dot( B, B ) );
float scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );
return mat3( T * scale, B * scale, N );
}
#endif`,i0=`#ifdef USE_CLEARCOAT
vec3 clearcoatNormal = nonPerturbedNormal;
#endif`,s0=`#ifdef USE_CLEARCOAT_NORMALMAP
vec3 clearcoatMapN = texture2D( clearcoatNormalMap, vClearcoatNormalMapUv ).xyz * 2.0 - 1.0;
clearcoatMapN.xy *= clearcoatNormalScale;
clearcoatNormal = normalize( tbn2 * clearcoatMapN );
#endif`,r0=`#ifdef USE_CLEARCOATMAP
uniform sampler2D clearcoatMap;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
uniform sampler2D clearcoatNormalMap;
uniform vec2 clearcoatNormalScale;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
uniform sampler2D clearcoatRoughnessMap;
#endif`,o0=`#ifdef USE_IRIDESCENCEMAP
uniform sampler2D iridescenceMap;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
uniform sampler2D iridescenceThicknessMap;
#endif`,a0=`#ifdef OPAQUE
diffuseColor.a = 1.0;
#endif
#ifdef USE_TRANSMISSION
diffuseColor.a *= material.transmissionAlpha;
#endif
gl_FragColor = vec4( outgoingLight, diffuseColor.a );`,l0=`vec3 packNormalToRGB( const in vec3 normal ) {
return normalize( normal ) * 0.5 + 0.5;
}
vec3 unpackRGBToNormal( const in vec3 rgb ) {
return 2.0 * rgb.xyz - 1.0;
}
const float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;
const vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );
const vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );
const float ShiftRight8 = 1. / 256.;
vec4 packDepthToRGBA( const in float v ) {
vec4 r = vec4( fract( v * PackFactors ), v );
r.yzw -= r.xyz * ShiftRight8; return r * PackUpscale;
}
float unpackRGBAToDepth( const in vec4 v ) {
return dot( v, UnpackFactors );
}
vec2 packDepthToRG( in highp float v ) {
return packDepthToRGBA( v ).yx;
}
float unpackRGToDepth( const in highp vec2 v ) {
return unpackRGBAToDepth( vec4( v.xy, 0.0, 0.0 ) );
}
vec4 pack2HalfToRGBA( vec2 v ) {
vec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );
return vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );
}
vec2 unpackRGBATo2Half( vec4 v ) {
return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}
float viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {
return ( viewZ + near ) / ( near - far );
}
float orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {
return depth * ( near - far ) - near;
}
float viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {
return ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );
}
float perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {
return ( near * far ) / ( ( far - near ) * depth - far );
}`,c0=`#ifdef PREMULTIPLIED_ALPHA
gl_FragColor.rgb *= gl_FragColor.a;
#endif`,u0=`vec4 mvPosition = vec4( transformed, 1.0 );
#ifdef USE_BATCHING
mvPosition = batchingMatrix * mvPosition;
#endif
#ifdef USE_INSTANCING
mvPosition = instanceMatrix * mvPosition;
#endif
mvPosition = modelViewMatrix * mvPosition;
gl_Position = projectionMatrix * mvPosition;`,h0=`#ifdef DITHERING
gl_FragColor.rgb = dithering( gl_FragColor.rgb );
#endif`,d0=`#ifdef DITHERING
vec3 dithering( vec3 color ) {
float grid_position = rand( gl_FragCoord.xy );
vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );
dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );
return color + dither_shift_RGB;
}
#endif`,f0=`float roughnessFactor = roughness;
#ifdef USE_ROUGHNESSMAP
vec4 texelRoughness = texture2D( roughnessMap, vRoughnessMapUv );
roughnessFactor *= texelRoughness.g;
#endif`,p0=`#ifdef USE_ROUGHNESSMAP
uniform sampler2D roughnessMap;
#endif`,m0=`#if NUM_SPOT_LIGHT_COORDS > 0
varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];
#endif
#if NUM_SPOT_LIGHT_MAPS > 0
uniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];
#endif
#ifdef USE_SHADOWMAP
#if NUM_DIR_LIGHT_SHADOWS > 0
uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];
varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];
struct DirectionalLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];
#endif
#if NUM_SPOT_LIGHT_SHADOWS > 0
uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];
struct SpotLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
uniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];
varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];
struct PointLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
float shadowCameraNear;
float shadowCameraFar;
};
uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];
#endif
float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {
return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );
}
vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {
return unpackRGBATo2Half( texture2D( shadow, uv ) );
}
float VSMShadow (sampler2D shadow, vec2 uv, float compare ){
float occlusion = 1.0;
vec2 distribution = texture2DDistribution( shadow, uv );
float hard_shadow = step( compare , distribution.x );
if (hard_shadow != 1.0 ) {
float distance = compare - distribution.x ;
float variance = max( 0.00000, distribution.y * distribution.y );
float softness_probability = variance / (variance + distance * distance ); softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );
}
return occlusion;
}
float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {
float shadow = 1.0;
shadowCoord.xyz /= shadowCoord.w;
shadowCoord.z += shadowBias;
bool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;
bool frustumTest = inFrustum && shadowCoord.z <= 1.0;
if ( frustumTest ) {
#if defined( SHADOWMAP_TYPE_PCF )
vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
float dx0 = - texelSize.x * shadowRadius;
float dy0 = - texelSize.y * shadowRadius;
float dx1 = + texelSize.x * shadowRadius;
float dy1 = + texelSize.y * shadowRadius;
float dx2 = dx0 / 2.0;
float dy2 = dy0 / 2.0;
float dx3 = dx1 / 2.0;
float dy3 = dy1 / 2.0;
shadow = (
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )
) * ( 1.0 / 17.0 );
#elif defined( SHADOWMAP_TYPE_PCF_SOFT )
vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
float dx = texelSize.x;
float dy = texelSize.y;
vec2 uv = shadowCoord.xy;
vec2 f = fract( uv * shadowMapSize + 0.5 );
uv -= f * texelSize;
shadow = (
texture2DCompare( shadowMap, uv, shadowCoord.z ) +
texture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +
texture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +
mix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),
f.x ) +
mix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),
f.x ) +
mix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),
f.y ) +
mix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),
f.y ) +
mix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),
f.x ),
mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),
f.x ),
f.y )
) * ( 1.0 / 9.0 );
#elif defined( SHADOWMAP_TYPE_VSM )
shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );
#else
shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );
#endif
}
return shadow;
}
vec2 cubeToUV( vec3 v, float texelSizeY ) {
vec3 absV = abs( v );
float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );
absV *= scaleToCube;
v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );
vec2 planar = v.xy;
float almostATexel = 1.5 * texelSizeY;
float almostOne = 1.0 - almostATexel;
if ( absV.z >= almostOne ) {
if ( v.z > 0.0 )
planar.x = 4.0 - v.x;
} else if ( absV.x >= almostOne ) {
float signX = sign( v.x );
planar.x = v.z * signX + 2.0 * signX;
} else if ( absV.y >= almostOne ) {
float signY = sign( v.y );
planar.x = v.x + 2.0 * signY + 2.0;
planar.y = v.z * signY - 2.0;
}
return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );
}
float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {
float shadow = 1.0;
vec3 lightToPosition = shadowCoord.xyz;
float lightToPositionLength = length( lightToPosition );
if ( lightToPositionLength - shadowCameraFar <= 0.0 && lightToPositionLength - shadowCameraNear >= 0.0 ) {
float dp = ( lightToPositionLength - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear ); dp += shadowBias;
vec3 bd3D = normalize( lightToPosition );
vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );
#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )
vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;
shadow = (
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )
) * ( 1.0 / 9.0 );
#else
shadow = texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );
#endif
}
return shadow;
}
#endif`,g0=`#if NUM_SPOT_LIGHT_COORDS > 0
uniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ];
varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];
#endif
#ifdef USE_SHADOWMAP
#if NUM_DIR_LIGHT_SHADOWS > 0
uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];
varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];
struct DirectionalLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];
#endif
#if NUM_SPOT_LIGHT_SHADOWS > 0
struct SpotLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];
varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];
struct PointLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
float shadowCameraNear;
float shadowCameraFar;
};
uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];
#endif
#endif`,v0=`#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 )
vec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );
vec4 shadowWorldPosition;
#endif
#if defined( USE_SHADOWMAP )
#if NUM_DIR_LIGHT_SHADOWS > 0
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {
shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );
vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;
}
#pragma unroll_loop_end
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
#pragma unroll_loop_start
for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {
shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );
vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;
}
#pragma unroll_loop_end
#endif
#endif
#if NUM_SPOT_LIGHT_COORDS > 0
#pragma unroll_loop_start
for ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) {
shadowWorldPosition = worldPosition;
#if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
shadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias;
#endif
vSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition;
}
#pragma unroll_loop_end
#endif`,_0=`float getShadowMask() {
float shadow = 1.0;
#ifdef USE_SHADOWMAP
#if NUM_DIR_LIGHT_SHADOWS > 0
DirectionalLightShadow directionalLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {
directionalLight = directionalLightShadows[ i ];
shadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;
}
#pragma unroll_loop_end
#endif
#if NUM_SPOT_LIGHT_SHADOWS > 0
SpotLightShadow spotLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {
spotLight = spotLightShadows[ i ];
shadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;
}
#pragma unroll_loop_end
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
PointLightShadow pointLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {
pointLight = pointLightShadows[ i ];
shadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;
}
#pragma unroll_loop_end
#endif
#endif
return shadow;
}`,y0=`#ifdef USE_SKINNING
mat4 boneMatX = getBoneMatrix( skinIndex.x );
mat4 boneMatY = getBoneMatrix( skinIndex.y );
mat4 boneMatZ = getBoneMatrix( skinIndex.z );
mat4 boneMatW = getBoneMatrix( skinIndex.w );
#endif`,x0=`#ifdef USE_SKINNING
uniform mat4 bindMatrix;
uniform mat4 bindMatrixInverse;
uniform highp sampler2D boneTexture;
mat4 getBoneMatrix( const in float i ) {
int size = textureSize( boneTexture, 0 ).x;
int j = int( i ) * 4;
int x = j % size;
int y = j / size;
vec4 v1 = texelFetch( boneTexture, ivec2( x, y ), 0 );
vec4 v2 = texelFetch( boneTexture, ivec2( x + 1, y ), 0 );
vec4 v3 = texelFetch( boneTexture, ivec2( x + 2, y ), 0 );
vec4 v4 = texelFetch( boneTexture, ivec2( x + 3, y ), 0 );
return mat4( v1, v2, v3, v4 );
}
#endif`,M0=`#ifdef USE_SKINNING
vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );
vec4 skinned = vec4( 0.0 );
skinned += boneMatX * skinVertex * skinWeight.x;
skinned += boneMatY * skinVertex * skinWeight.y;
skinned += boneMatZ * skinVertex * skinWeight.z;
skinned += boneMatW * skinVertex * skinWeight.w;
transformed = ( bindMatrixInverse * skinned ).xyz;
#endif`,b0=`#ifdef USE_SKINNING
mat4 skinMatrix = mat4( 0.0 );
skinMatrix += skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
skinMatrix += skinWeight.z * boneMatZ;
skinMatrix += skinWeight.w * boneMatW;
skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;
objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;
#ifdef USE_TANGENT
objectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;
#endif
#endif`,S0=`float specularStrength;
#ifdef USE_SPECULARMAP
vec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );
specularStrength = texelSpecular.r;
#else
specularStrength = 1.0;
#endif`,w0=`#ifdef USE_SPECULARMAP
uniform sampler2D specularMap;
#endif`,A0=`#if defined( TONE_MAPPING )
gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );
#endif`,T0=`#ifndef saturate
#define saturate( a ) clamp( a, 0.0, 1.0 )
#endif
uniform float toneMappingExposure;
vec3 LinearToneMapping( vec3 color ) {
return saturate( toneMappingExposure * color );
}
vec3 ReinhardToneMapping( vec3 color ) {
color *= toneMappingExposure;
return saturate( color / ( vec3( 1.0 ) + color ) );
}
vec3 OptimizedCineonToneMapping( vec3 color ) {
color *= toneMappingExposure;
color = max( vec3( 0.0 ), color - 0.004 );
return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );
}
vec3 RRTAndODTFit( vec3 v ) {
vec3 a = v * ( v + 0.0245786 ) - 0.000090537;
vec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;
return a / b;
}
vec3 ACESFilmicToneMapping( vec3 color ) {
const mat3 ACESInputMat = mat3(
vec3( 0.59719, 0.07600, 0.02840 ), vec3( 0.35458, 0.90834, 0.13383 ),
vec3( 0.04823, 0.01566, 0.83777 )
);
const mat3 ACESOutputMat = mat3(
vec3( 1.60475, -0.10208, -0.00327 ), vec3( -0.53108, 1.10813, -0.07276 ),
vec3( -0.07367, -0.00605, 1.07602 )
);
color *= toneMappingExposure / 0.6;
color = ACESInputMat * color;
color = RRTAndODTFit( color );
color = ACESOutputMat * color;
return saturate( color );
}
const mat3 LINEAR_REC2020_TO_LINEAR_SRGB = mat3(
vec3( 1.6605, - 0.1246, - 0.0182 ),
vec3( - 0.5876, 1.1329, - 0.1006 ),
vec3( - 0.0728, - 0.0083, 1.1187 )
);
const mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(
vec3( 0.6274, 0.0691, 0.0164 ),
vec3( 0.3293, 0.9195, 0.0880 ),
vec3( 0.0433, 0.0113, 0.8956 )
);
vec3 agxDefaultContrastApprox( vec3 x ) {
vec3 x2 = x * x;
vec3 x4 = x2 * x2;
return + 15.5 * x4 * x2
- 40.14 * x4 * x
+ 31.96 * x4
- 6.868 * x2 * x
+ 0.4298 * x2
+ 0.1191 * x
- 0.00232;
}
vec3 AgXToneMapping( vec3 color ) {
const mat3 AgXInsetMatrix = mat3(
vec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ),
vec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ),
vec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 )
);
const mat3 AgXOutsetMatrix = mat3(
vec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ),
vec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ),
vec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 )
);
const float AgxMinEv = - 12.47393; const float AgxMaxEv = 4.026069;
color *= toneMappingExposure;
color = LINEAR_SRGB_TO_LINEAR_REC2020 * color;
color = AgXInsetMatrix * color;
color = max( color, 1e-10 ); color = log2( color );
color = ( color - AgxMinEv ) / ( AgxMaxEv - AgxMinEv );
color = clamp( color, 0.0, 1.0 );
color = agxDefaultContrastApprox( color );
color = AgXOutsetMatrix * color;
color = pow( max( vec3( 0.0 ), color ), vec3( 2.2 ) );
color = LINEAR_REC2020_TO_LINEAR_SRGB * color;
color = clamp( color, 0.0, 1.0 );
return color;
}
vec3 NeutralToneMapping( vec3 color ) {
const float StartCompression = 0.8 - 0.04;
const float Desaturation = 0.15;
color *= toneMappingExposure;
float x = min( color.r, min( color.g, color.b ) );
float offset = x < 0.08 ? x - 6.25 * x * x : 0.04;
color -= offset;
float peak = max( color.r, max( color.g, color.b ) );
if ( peak < StartCompression ) return color;
float d = 1. - StartCompression;
float newPeak = 1. - d * d / ( peak + d - StartCompression );
color *= newPeak / peak;
float g = 1. - 1. / ( Desaturation * ( peak - newPeak ) + 1. );
return mix( color, vec3( newPeak ), g );
}
vec3 CustomToneMapping( vec3 color ) { return color; }`,E0=`#ifdef USE_TRANSMISSION
material.transmission = transmission;
material.transmissionAlpha = 1.0;
material.thickness = thickness;
material.attenuationDistance = attenuationDistance;
material.attenuationColor = attenuationColor;
#ifdef USE_TRANSMISSIONMAP
material.transmission *= texture2D( transmissionMap, vTransmissionMapUv ).r;
#endif
#ifdef USE_THICKNESSMAP
material.thickness *= texture2D( thicknessMap, vThicknessMapUv ).g;
#endif
vec3 pos = vWorldPosition;
vec3 v = normalize( cameraPosition - pos );
vec3 n = inverseTransformDirection( normal, viewMatrix );
vec4 transmitted = getIBLVolumeRefraction(
n, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,
pos, modelMatrix, viewMatrix, projectionMatrix, material.dispersion, material.ior, material.thickness,
material.attenuationColor, material.attenuationDistance );
material.transmissionAlpha = mix( material.transmissionAlpha, transmitted.a, material.transmission );
totalDiffuse = mix( totalDiffuse, transmitted.rgb, material.transmission );
#endif`,C0=`#ifdef USE_TRANSMISSION
uniform float transmission;
uniform float thickness;
uniform float attenuationDistance;
uniform vec3 attenuationColor;
#ifdef USE_TRANSMISSIONMAP
uniform sampler2D transmissionMap;
#endif
#ifdef USE_THICKNESSMAP
uniform sampler2D thicknessMap;
#endif
uniform vec2 transmissionSamplerSize;
uniform sampler2D transmissionSamplerMap;
uniform mat4 modelMatrix;
uniform mat4 projectionMatrix;
varying vec3 vWorldPosition;
float w0( float a ) {
return ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );
}
float w1( float a ) {
return ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );
}
float w2( float a ){
return ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );
}
float w3( float a ) {
return ( 1.0 / 6.0 ) * ( a * a * a );
}
float g0( float a ) {
return w0( a ) + w1( a );
}
float g1( float a ) {
return w2( a ) + w3( a );
}
float h0( float a ) {
return - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );
}
float h1( float a ) {
return 1.0 + w3( a ) / ( w2( a ) + w3( a ) );
}
vec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {
uv = uv * texelSize.zw + 0.5;
vec2 iuv = floor( uv );
vec2 fuv = fract( uv );
float g0x = g0( fuv.x );
float g1x = g1( fuv.x );
float h0x = h0( fuv.x );
float h1x = h1( fuv.x );
float h0y = h0( fuv.y );
float h1y = h1( fuv.y );
vec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
vec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
vec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
vec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
return g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +
g1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );
}
vec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {
vec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );
vec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );
vec2 fLodSizeInv = 1.0 / fLodSize;
vec2 cLodSizeInv = 1.0 / cLodSize;
vec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );
vec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );
return mix( fSample, cSample, fract( lod ) );
}
vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {
vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );
vec3 modelScale;
modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );
modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );
modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );
return normalize( refractionVector ) * thickness * modelScale;
}
float applyIorToRoughness( const in float roughness, const in float ior ) {
return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );
}
vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {
float lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );
return textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );
}
vec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {
if ( isinf( attenuationDistance ) ) {
return vec3( 1.0 );
} else {
vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;
vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); return transmittance;
}
}
vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,
const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,
const in mat4 viewMatrix, const in mat4 projMatrix, const in float dispersion, const in float ior, const in float thickness,
const in vec3 attenuationColor, const in float attenuationDistance ) {
vec4 transmittedLight;
vec3 transmittance;
#ifdef USE_DISPERSION
float halfSpread = ( ior - 1.0 ) * 0.025 * dispersion;
vec3 iors = vec3( ior - halfSpread, ior, ior + halfSpread );
for ( int i = 0; i < 3; i ++ ) {
vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, iors[ i ], modelMatrix );
vec3 refractedRayExit = position + transmissionRay;
vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
vec2 refractionCoords = ndcPos.xy / ndcPos.w;
refractionCoords += 1.0;
refractionCoords /= 2.0;
vec4 transmissionSample = getTransmissionSample( refractionCoords, roughness, iors[ i ] );
transmittedLight[ i ] = transmissionSample[ i ];
transmittedLight.a += transmissionSample.a;
transmittance[ i ] = diffuseColor[ i ] * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance )[ i ];
}
transmittedLight.a /= 3.0;
#else
vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
vec3 refractedRayExit = position + transmissionRay;
vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
vec2 refractionCoords = ndcPos.xy / ndcPos.w;
refractionCoords += 1.0;
refractionCoords /= 2.0;
transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
transmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );
#endif
vec3 attenuatedColor = transmittance * transmittedLight.rgb;
vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );
float transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;
return vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );
}
#endif`,P0=`#if defined( USE_UV ) || defined( USE_ANISOTROPY )
varying vec2 vUv;
#endif
#ifdef USE_MAP
varying vec2 vMapUv;
#endif
#ifdef USE_ALPHAMAP
varying vec2 vAlphaMapUv;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vLightMapUv;
#endif
#ifdef USE_AOMAP
varying vec2 vAoMapUv;
#endif
#ifdef USE_BUMPMAP
varying vec2 vBumpMapUv;
#endif
#ifdef USE_NORMALMAP
varying vec2 vNormalMapUv;
#endif
#ifdef USE_EMISSIVEMAP
varying vec2 vEmissiveMapUv;
#endif
#ifdef USE_METALNESSMAP
varying vec2 vMetalnessMapUv;
#endif
#ifdef USE_ROUGHNESSMAP
varying vec2 vRoughnessMapUv;
#endif
#ifdef USE_ANISOTROPYMAP
varying vec2 vAnisotropyMapUv;
#endif
#ifdef USE_CLEARCOATMAP
varying vec2 vClearcoatMapUv;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
varying vec2 vClearcoatNormalMapUv;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
varying vec2 vClearcoatRoughnessMapUv;
#endif
#ifdef USE_IRIDESCENCEMAP
varying vec2 vIridescenceMapUv;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
varying vec2 vIridescenceThicknessMapUv;
#endif
#ifdef USE_SHEEN_COLORMAP
varying vec2 vSheenColorMapUv;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
varying vec2 vSheenRoughnessMapUv;
#endif
#ifdef USE_SPECULARMAP
varying vec2 vSpecularMapUv;
#endif
#ifdef USE_SPECULAR_COLORMAP
varying vec2 vSpecularColorMapUv;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
varying vec2 vSpecularIntensityMapUv;
#endif
#ifdef USE_TRANSMISSIONMAP
uniform mat3 transmissionMapTransform;
varying vec2 vTransmissionMapUv;
#endif
#ifdef USE_THICKNESSMAP
uniform mat3 thicknessMapTransform;
varying vec2 vThicknessMapUv;
#endif`,R0=`#if defined( USE_UV ) || defined( USE_ANISOTROPY )
varying vec2 vUv;
#endif
#ifdef USE_MAP
uniform mat3 mapTransform;
varying vec2 vMapUv;
#endif
#ifdef USE_ALPHAMAP
uniform mat3 alphaMapTransform;
varying vec2 vAlphaMapUv;
#endif
#ifdef USE_LIGHTMAP
uniform mat3 lightMapTransform;
varying vec2 vLightMapUv;
#endif
#ifdef USE_AOMAP
uniform mat3 aoMapTransform;
varying vec2 vAoMapUv;
#endif
#ifdef USE_BUMPMAP
uniform mat3 bumpMapTransform;
varying vec2 vBumpMapUv;
#endif
#ifdef USE_NORMALMAP
uniform mat3 normalMapTransform;
varying vec2 vNormalMapUv;
#endif
#ifdef USE_DISPLACEMENTMAP
uniform mat3 displacementMapTransform;
varying vec2 vDisplacementMapUv;
#endif
#ifdef USE_EMISSIVEMAP
uniform mat3 emissiveMapTransform;
varying vec2 vEmissiveMapUv;
#endif
#ifdef USE_METALNESSMAP
uniform mat3 metalnessMapTransform;
varying vec2 vMetalnessMapUv;
#endif
#ifdef USE_ROUGHNESSMAP
uniform mat3 roughnessMapTransform;
varying vec2 vRoughnessMapUv;
#endif
#ifdef USE_ANISOTROPYMAP
uniform mat3 anisotropyMapTransform;
varying vec2 vAnisotropyMapUv;
#endif
#ifdef USE_CLEARCOATMAP
uniform mat3 clearcoatMapTransform;
varying vec2 vClearcoatMapUv;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
uniform mat3 clearcoatNormalMapTransform;
varying vec2 vClearcoatNormalMapUv;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
uniform mat3 clearcoatRoughnessMapTransform;
varying vec2 vClearcoatRoughnessMapUv;
#endif
#ifdef USE_SHEEN_COLORMAP
uniform mat3 sheenColorMapTransform;
varying vec2 vSheenColorMapUv;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
uniform mat3 sheenRoughnessMapTransform;
varying vec2 vSheenRoughnessMapUv;
#endif
#ifdef USE_IRIDESCENCEMAP
uniform mat3 iridescenceMapTransform;
varying vec2 vIridescenceMapUv;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
uniform mat3 iridescenceThicknessMapTransform;
varying vec2 vIridescenceThicknessMapUv;
#endif
#ifdef USE_SPECULARMAP
uniform mat3 specularMapTransform;
varying vec2 vSpecularMapUv;
#endif
#ifdef USE_SPECULAR_COLORMAP
uniform mat3 specularColorMapTransform;
varying vec2 vSpecularColorMapUv;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
uniform mat3 specularIntensityMapTransform;
varying vec2 vSpecularIntensityMapUv;
#endif
#ifdef USE_TRANSMISSIONMAP
uniform mat3 transmissionMapTransform;
varying vec2 vTransmissionMapUv;
#endif
#ifdef USE_THICKNESSMAP
uniform mat3 thicknessMapTransform;
varying vec2 vThicknessMapUv;
#endif`,I0=`#if defined( USE_UV ) || defined( USE_ANISOTROPY )
vUv = vec3( uv, 1 ).xy;
#endif
#ifdef USE_MAP
vMapUv = ( mapTransform * vec3( MAP_UV, 1 ) ).xy;
#endif
#ifdef USE_ALPHAMAP
vAlphaMapUv = ( alphaMapTransform * vec3( ALPHAMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_LIGHTMAP
vLightMapUv = ( lightMapTransform * vec3( LIGHTMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_AOMAP
vAoMapUv = ( aoMapTransform * vec3( AOMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_BUMPMAP
vBumpMapUv = ( bumpMapTransform * vec3( BUMPMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_NORMALMAP
vNormalMapUv = ( normalMapTransform * vec3( NORMALMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_DISPLACEMENTMAP
vDisplacementMapUv = ( displacementMapTransform * vec3( DISPLACEMENTMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_EMISSIVEMAP
vEmissiveMapUv = ( emissiveMapTransform * vec3( EMISSIVEMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_METALNESSMAP
vMetalnessMapUv = ( metalnessMapTransform * vec3( METALNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_ROUGHNESSMAP
vRoughnessMapUv = ( roughnessMapTransform * vec3( ROUGHNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_ANISOTROPYMAP
vAnisotropyMapUv = ( anisotropyMapTransform * vec3( ANISOTROPYMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_CLEARCOATMAP
vClearcoatMapUv = ( clearcoatMapTransform * vec3( CLEARCOATMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
vClearcoatNormalMapUv = ( clearcoatNormalMapTransform * vec3( CLEARCOAT_NORMALMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
vClearcoatRoughnessMapUv = ( clearcoatRoughnessMapTransform * vec3( CLEARCOAT_ROUGHNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_IRIDESCENCEMAP
vIridescenceMapUv = ( iridescenceMapTransform * vec3( IRIDESCENCEMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
vIridescenceThicknessMapUv = ( iridescenceThicknessMapTransform * vec3( IRIDESCENCE_THICKNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SHEEN_COLORMAP
vSheenColorMapUv = ( sheenColorMapTransform * vec3( SHEEN_COLORMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
vSheenRoughnessMapUv = ( sheenRoughnessMapTransform * vec3( SHEEN_ROUGHNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SPECULARMAP
vSpecularMapUv = ( specularMapTransform * vec3( SPECULARMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SPECULAR_COLORMAP
vSpecularColorMapUv = ( specularColorMapTransform * vec3( SPECULAR_COLORMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
vSpecularIntensityMapUv = ( specularIntensityMapTransform * vec3( SPECULAR_INTENSITYMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_TRANSMISSIONMAP
vTransmissionMapUv = ( transmissionMapTransform * vec3( TRANSMISSIONMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_THICKNESSMAP
vThicknessMapUv = ( thicknessMapTransform * vec3( THICKNESSMAP_UV, 1 ) ).xy;
#endif`,L0=`#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0
vec4 worldPosition = vec4( transformed, 1.0 );
#ifdef USE_BATCHING
worldPosition = batchingMatrix * worldPosition;
#endif
#ifdef USE_INSTANCING
worldPosition = instanceMatrix * worldPosition;
#endif
worldPosition = modelMatrix * worldPosition;
#endif`;const N0=`varying vec2 vUv;
uniform mat3 uvTransform;
void main() {
vUv = ( uvTransform * vec3( uv, 1 ) ).xy;
gl_Position = vec4( position.xy, 1.0, 1.0 );
}`,D0=`uniform sampler2D t2D;
uniform float backgroundIntensity;
varying vec2 vUv;
void main() {
vec4 texColor = texture2D( t2D, vUv );
#ifdef DECODE_VIDEO_TEXTURE
texColor = vec4( mix( pow( texColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), texColor.rgb * 0.0773993808, vec3( lessThanEqual( texColor.rgb, vec3( 0.04045 ) ) ) ), texColor.w );
#endif
texColor.rgb *= backgroundIntensity;
gl_FragColor = texColor;
#include <tonemapping_fragment>
#include <colorspace_fragment>
}`,U0=`varying vec3 vWorldDirection;
#include <common>
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
#include <project_vertex>
gl_Position.z = gl_Position.w;
}`,O0=`#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#elif defined( ENVMAP_TYPE_CUBE_UV )
uniform sampler2D envMap;
#endif
uniform float flipEnvMap;
uniform float backgroundBlurriness;
uniform float backgroundIntensity;
uniform mat3 backgroundRotation;
varying vec3 vWorldDirection;
#include <cube_uv_reflection_fragment>
void main() {
#ifdef ENVMAP_TYPE_CUBE
vec4 texColor = textureCube( envMap, backgroundRotation * vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );
#elif defined( ENVMAP_TYPE_CUBE_UV )
vec4 texColor = textureCubeUV( envMap, backgroundRotation * vWorldDirection, backgroundBlurriness );
#else
vec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );
#endif
texColor.rgb *= backgroundIntensity;
gl_FragColor = texColor;
#include <tonemapping_fragment>
#include <colorspace_fragment>
}`,F0=`varying vec3 vWorldDirection;
#include <common>
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
#include <project_vertex>
gl_Position.z = gl_Position.w;
}`,k0=`uniform samplerCube tCube;
uniform float tFlip;
uniform float opacity;
varying vec3 vWorldDirection;
void main() {
vec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );
gl_FragColor = texColor;
gl_FragColor.a *= opacity;
#include <tonemapping_fragment>
#include <colorspace_fragment>
}`,B0=`#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <displacementmap_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
varying vec2 vHighPrecisionZW;
void main() {
#include <uv_vertex>
#include <batching_vertex>
#include <skinbase_vertex>
#include <morphinstance_vertex>
#ifdef USE_DISPLACEMENTMAP
#include <beginnormal_vertex>
#include <morphnormal_vertex>
#include <skinnormal_vertex>
#endif
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
vHighPrecisionZW = gl_Position.zw;
}`,z0=`#if DEPTH_PACKING == 3200
uniform float opacity;
#endif
#include <common>
#include <packing>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
varying vec2 vHighPrecisionZW;
void main() {
vec4 diffuseColor = vec4( 1.0 );
#include <clipping_planes_fragment>
#if DEPTH_PACKING == 3200
diffuseColor.a = opacity;
#endif
#include <map_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
#include <logdepthbuf_fragment>
float fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;
#if DEPTH_PACKING == 3200
gl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );
#elif DEPTH_PACKING == 3201
gl_FragColor = packDepthToRGBA( fragCoordZ );
#endif
}`,V0=`#define DISTANCE
varying vec3 vWorldPosition;
#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <displacementmap_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <batching_vertex>
#include <skinbase_vertex>
#include <morphinstance_vertex>
#ifdef USE_DISPLACEMENTMAP
#include <beginnormal_vertex>
#include <morphnormal_vertex>
#include <skinnormal_vertex>
#endif
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <worldpos_vertex>
#include <clipping_planes_vertex>
vWorldPosition = worldPosition.xyz;
}`,H0=`#define DISTANCE
uniform vec3 referencePosition;
uniform float nearDistance;
uniform float farDistance;
varying vec3 vWorldPosition;
#include <common>
#include <packing>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <clipping_planes_pars_fragment>
void main () {
vec4 diffuseColor = vec4( 1.0 );
#include <clipping_planes_fragment>
#include <map_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
float dist = length( vWorldPosition - referencePosition );
dist = ( dist - nearDistance ) / ( farDistance - nearDistance );
dist = saturate( dist );
gl_FragColor = packDepthToRGBA( dist );
}`,G0=`varying vec3 vWorldDirection;
#include <common>
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
#include <project_vertex>
}`,W0=`uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include <common>
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
#include <tonemapping_fragment>
#include <colorspace_fragment>
}`,$0=`uniform float scale;
attribute float lineDistance;
varying float vLineDistance;
#include <common>
#include <uv_pars_vertex>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <morphtarget_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
vLineDistance = scale * lineDistance;
#include <uv_vertex>
#include <color_vertex>
#include <morphinstance_vertex>
#include <morphcolor_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
}`,X0=`uniform vec3 diffuse;
uniform float opacity;
uniform float dashSize;
uniform float totalSize;
varying float vLineDistance;
#include <common>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
if ( mod( vLineDistance, totalSize ) > dashSize ) {
discard;
}
vec3 outgoingLight = vec3( 0.0 );
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
outgoingLight = diffuseColor.rgb;
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
}`,q0=`#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <envmap_pars_vertex>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <color_vertex>
#include <morphinstance_vertex>
#include <morphcolor_vertex>
#include <batching_vertex>
#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )
#include <beginnormal_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#endif
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <worldpos_vertex>
#include <envmap_vertex>
#include <fog_vertex>
}`,Y0=`uniform vec3 diffuse;
uniform float opacity;
#ifndef FLAT_SHADED
varying vec3 vNormal;
#endif
#include <common>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <aomap_pars_fragment>
#include <lightmap_pars_fragment>
#include <envmap_common_pars_fragment>
#include <envmap_pars_fragment>
#include <fog_pars_fragment>
#include <specularmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
#include <specularmap_fragment>
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
#ifdef USE_LIGHTMAP
vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );
reflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;
#else
reflectedLight.indirectDiffuse += vec3( 1.0 );
#endif
#include <aomap_fragment>
reflectedLight.indirectDiffuse *= diffuseColor.rgb;
vec3 outgoingLight = reflectedLight.indirectDiffuse;
#include <envmap_fragment>
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
#include <dithering_fragment>
}`,Z0=`#define LAMBERT
varying vec3 vViewPosition;
#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <displacementmap_pars_vertex>
#include <envmap_pars_vertex>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <normal_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <shadowmap_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <color_vertex>
#include <morphinstance_vertex>
#include <morphcolor_vertex>
#include <batching_vertex>
#include <beginnormal_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#include <normal_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
vViewPosition = - mvPosition.xyz;
#include <worldpos_vertex>
#include <envmap_vertex>
#include <shadowmap_vertex>
#include <fog_vertex>
}`,J0=`#define LAMBERT
uniform vec3 diffuse;
uniform vec3 emissive;
uniform float opacity;
#include <common>
#include <packing>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <aomap_pars_fragment>
#include <lightmap_pars_fragment>
#include <emissivemap_pars_fragment>
#include <envmap_common_pars_fragment>
#include <envmap_pars_fragment>
#include <fog_pars_fragment>
#include <bsdfs>
#include <lights_pars_begin>
#include <normal_pars_fragment>
#include <lights_lambert_pars_fragment>
#include <shadowmap_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <specularmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
vec3 totalEmissiveRadiance = emissive;
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
#include <specularmap_fragment>
#include <normal_fragment_begin>
#include <normal_fragment_maps>
#include <emissivemap_fragment>
#include <lights_lambert_fragment>
#include <lights_fragment_begin>
#include <lights_fragment_maps>
#include <lights_fragment_end>
#include <aomap_fragment>
vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;
#include <envmap_fragment>
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
#include <dithering_fragment>
}`,K0=`#define MATCAP
varying vec3 vViewPosition;
#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <color_pars_vertex>
#include <displacementmap_pars_vertex>
#include <fog_pars_vertex>
#include <normal_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <color_vertex>
#include <morphinstance_vertex>
#include <morphcolor_vertex>
#include <batching_vertex>
#include <beginnormal_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#include <normal_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
vViewPosition = - mvPosition.xyz;
}`,j0=`#define MATCAP
uniform vec3 diffuse;
uniform float opacity;
uniform sampler2D matcap;
varying vec3 vViewPosition;
#include <common>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <fog_pars_fragment>
#include <normal_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
#include <normal_fragment_begin>
#include <normal_fragment_maps>
vec3 viewDir = normalize( vViewPosition );
vec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );
vec3 y = cross( viewDir, x );
vec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;
#ifdef USE_MATCAP
vec4 matcapColor = texture2D( matcap, uv );
#else
vec4 matcapColor = vec4( vec3( mix( 0.2, 0.8, uv.y ) ), 1.0 );
#endif
vec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
#include <dithering_fragment>
}`,Q0=`#define NORMAL
#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )
varying vec3 vViewPosition;
#endif
#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <displacementmap_pars_vertex>
#include <normal_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <batching_vertex>
#include <beginnormal_vertex>
#include <morphinstance_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#include <normal_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )
vViewPosition = - mvPosition.xyz;
#endif
}`,ey=`#define NORMAL
uniform float opacity;
#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )
varying vec3 vViewPosition;
#endif
#include <packing>
#include <uv_pars_fragment>
#include <normal_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( 0.0, 0.0, 0.0, opacity );
#include <clipping_planes_fragment>
#include <logdepthbuf_fragment>
#include <normal_fragment_begin>
#include <normal_fragment_maps>
gl_FragColor = vec4( packNormalToRGB( normal ), diffuseColor.a );
#ifdef OPAQUE
gl_FragColor.a = 1.0;
#endif
}`,ty=`#define PHONG
varying vec3 vViewPosition;
#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <displacementmap_pars_vertex>
#include <envmap_pars_vertex>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <normal_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <shadowmap_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <color_vertex>
#include <morphcolor_vertex>
#include <batching_vertex>
#include <beginnormal_vertex>
#include <morphinstance_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#include <normal_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
vViewPosition = - mvPosition.xyz;
#include <worldpos_vertex>
#include <envmap_vertex>
#include <shadowmap_vertex>
#include <fog_vertex>
}`,ny=`#define PHONG
uniform vec3 diffuse;
uniform vec3 emissive;
uniform vec3 specular;
uniform float shininess;
uniform float opacity;
#include <common>
#include <packing>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <aomap_pars_fragment>
#include <lightmap_pars_fragment>
#include <emissivemap_pars_fragment>
#include <envmap_common_pars_fragment>
#include <envmap_pars_fragment>
#include <fog_pars_fragment>
#include <bsdfs>
#include <lights_pars_begin>
#include <normal_pars_fragment>
#include <lights_phong_pars_fragment>
#include <shadowmap_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <specularmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
vec3 totalEmissiveRadiance = emissive;
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
#include <specularmap_fragment>
#include <normal_fragment_begin>
#include <normal_fragment_maps>
#include <emissivemap_fragment>
#include <lights_phong_fragment>
#include <lights_fragment_begin>
#include <lights_fragment_maps>
#include <lights_fragment_end>
#include <aomap_fragment>
vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;
#include <envmap_fragment>
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
#include <dithering_fragment>
}`,iy=`#define STANDARD
varying vec3 vViewPosition;
#ifdef USE_TRANSMISSION
varying vec3 vWorldPosition;
#endif
#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <displacementmap_pars_vertex>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <normal_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <shadowmap_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <color_vertex>
#include <morphinstance_vertex>
#include <morphcolor_vertex>
#include <batching_vertex>
#include <beginnormal_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#include <normal_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
vViewPosition = - mvPosition.xyz;
#include <worldpos_vertex>
#include <shadowmap_vertex>
#include <fog_vertex>
#ifdef USE_TRANSMISSION
vWorldPosition = worldPosition.xyz;
#endif
}`,sy=`#define STANDARD
#ifdef PHYSICAL
#define IOR
#define USE_SPECULAR
#endif
uniform vec3 diffuse;
uniform vec3 emissive;
uniform float roughness;
uniform float metalness;
uniform float opacity;
#ifdef IOR
uniform float ior;
#endif
#ifdef USE_SPECULAR
uniform float specularIntensity;
uniform vec3 specularColor;
#ifdef USE_SPECULAR_COLORMAP
uniform sampler2D specularColorMap;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
uniform sampler2D specularIntensityMap;
#endif
#endif
#ifdef USE_CLEARCOAT
uniform float clearcoat;
uniform float clearcoatRoughness;
#endif
#ifdef USE_DISPERSION
uniform float dispersion;
#endif
#ifdef USE_IRIDESCENCE
uniform float iridescence;
uniform float iridescenceIOR;
uniform float iridescenceThicknessMinimum;
uniform float iridescenceThicknessMaximum;
#endif
#ifdef USE_SHEEN
uniform vec3 sheenColor;
uniform float sheenRoughness;
#ifdef USE_SHEEN_COLORMAP
uniform sampler2D sheenColorMap;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
uniform sampler2D sheenRoughnessMap;
#endif
#endif
#ifdef USE_ANISOTROPY
uniform vec2 anisotropyVector;
#ifdef USE_ANISOTROPYMAP
uniform sampler2D anisotropyMap;
#endif
#endif
varying vec3 vViewPosition;
#include <common>
#include <packing>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <aomap_pars_fragment>
#include <lightmap_pars_fragment>
#include <emissivemap_pars_fragment>
#include <iridescence_fragment>
#include <cube_uv_reflection_fragment>
#include <envmap_common_pars_fragment>
#include <envmap_physical_pars_fragment>
#include <fog_pars_fragment>
#include <lights_pars_begin>
#include <normal_pars_fragment>
#include <lights_physical_pars_fragment>
#include <transmission_pars_fragment>
#include <shadowmap_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <clearcoat_pars_fragment>
#include <iridescence_pars_fragment>
#include <roughnessmap_pars_fragment>
#include <metalnessmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
vec3 totalEmissiveRadiance = emissive;
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
#include <roughnessmap_fragment>
#include <metalnessmap_fragment>
#include <normal_fragment_begin>
#include <normal_fragment_maps>
#include <clearcoat_normal_fragment_begin>
#include <clearcoat_normal_fragment_maps>
#include <emissivemap_fragment>
#include <lights_physical_fragment>
#include <lights_fragment_begin>
#include <lights_fragment_maps>
#include <lights_fragment_end>
#include <aomap_fragment>
vec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;
vec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;
#include <transmission_fragment>
vec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;
#ifdef USE_SHEEN
float sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );
outgoingLight = outgoingLight * sheenEnergyComp + sheenSpecularDirect + sheenSpecularIndirect;
#endif
#ifdef USE_CLEARCOAT
float dotNVcc = saturate( dot( geometryClearcoatNormal, geometryViewDir ) );
vec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );
outgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + ( clearcoatSpecularDirect + clearcoatSpecularIndirect ) * material.clearcoat;
#endif
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
#include <dithering_fragment>
}`,ry=`#define TOON
varying vec3 vViewPosition;
#include <common>
#include <batching_pars_vertex>
#include <uv_pars_vertex>
#include <displacementmap_pars_vertex>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <normal_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <shadowmap_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
#include <color_vertex>
#include <morphinstance_vertex>
#include <morphcolor_vertex>
#include <batching_vertex>
#include <beginnormal_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#include <normal_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
vViewPosition = - mvPosition.xyz;
#include <worldpos_vertex>
#include <shadowmap_vertex>
#include <fog_vertex>
}`,oy=`#define TOON
uniform vec3 diffuse;
uniform vec3 emissive;
uniform float opacity;
#include <common>
#include <packing>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <aomap_pars_fragment>
#include <lightmap_pars_fragment>
#include <emissivemap_pars_fragment>
#include <gradientmap_pars_fragment>
#include <fog_pars_fragment>
#include <bsdfs>
#include <lights_pars_begin>
#include <normal_pars_fragment>
#include <lights_toon_pars_fragment>
#include <shadowmap_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
vec3 totalEmissiveRadiance = emissive;
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
#include <normal_fragment_begin>
#include <normal_fragment_maps>
#include <emissivemap_fragment>
#include <lights_toon_fragment>
#include <lights_fragment_begin>
#include <lights_fragment_maps>
#include <lights_fragment_end>
#include <aomap_fragment>
vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
#include <dithering_fragment>
}`,ay=`uniform float size;
uniform float scale;
#include <common>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <morphtarget_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
#ifdef USE_POINTS_UV
varying vec2 vUv;
uniform mat3 uvTransform;
#endif
void main() {
#ifdef USE_POINTS_UV
vUv = ( uvTransform * vec3( uv, 1 ) ).xy;
#endif
#include <color_vertex>
#include <morphinstance_vertex>
#include <morphcolor_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <project_vertex>
gl_PointSize = size;
#ifdef USE_SIZEATTENUATION
bool isPerspective = isPerspectiveMatrix( projectionMatrix );
if ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );
#endif
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <worldpos_vertex>
#include <fog_vertex>
}`,ly=`uniform vec3 diffuse;
uniform float opacity;
#include <common>
#include <color_pars_fragment>
#include <map_particle_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
vec3 outgoingLight = vec3( 0.0 );
#include <logdepthbuf_fragment>
#include <map_particle_fragment>
#include <color_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
outgoingLight = diffuseColor.rgb;
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
}`,cy=`#include <common>
#include <batching_pars_vertex>
#include <fog_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <shadowmap_pars_vertex>
void main() {
#include <batching_vertex>
#include <beginnormal_vertex>
#include <morphinstance_vertex>
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <worldpos_vertex>
#include <shadowmap_vertex>
#include <fog_vertex>
}`,uy=`uniform vec3 color;
uniform float opacity;
#include <common>
#include <packing>
#include <fog_pars_fragment>
#include <bsdfs>
#include <lights_pars_begin>
#include <logdepthbuf_pars_fragment>
#include <shadowmap_pars_fragment>
#include <shadowmask_pars_fragment>
void main() {
#include <logdepthbuf_fragment>
gl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
}`,hy=`uniform float rotation;
uniform vec2 center;
#include <common>
#include <uv_pars_vertex>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
void main() {
#include <uv_vertex>
vec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );
vec2 scale;
scale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );
scale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );
#ifndef USE_SIZEATTENUATION
bool isPerspective = isPerspectiveMatrix( projectionMatrix );
if ( isPerspective ) scale *= - mvPosition.z;
#endif
vec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;
vec2 rotatedPosition;
rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;
rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;
mvPosition.xy += rotatedPosition;
gl_Position = projectionMatrix * mvPosition;
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
}`,dy=`uniform vec3 diffuse;
uniform float opacity;
#include <common>
#include <uv_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <alphatest_pars_fragment>
#include <alphahash_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
vec3 outgoingLight = vec3( 0.0 );
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <alphahash_fragment>
outgoingLight = diffuseColor.rgb;
#include <opaque_fragment>
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
}`,nt={alphahash_fragment:Dv,alphahash_pars_fragment:Uv,alphamap_fragment:Ov,alphamap_pars_fragment:Fv,alphatest_fragment:kv,alphatest_pars_fragment:Bv,aomap_fragment:zv,aomap_pars_fragment:Vv,batching_pars_vertex:Hv,batching_vertex:Gv,begin_vertex:Wv,beginnormal_vertex:$v,bsdfs:Xv,iridescence_fragment:qv,bumpmap_pars_fragment:Yv,clipping_planes_fragment:Zv,clipping_planes_pars_fragment:Jv,clipping_planes_pars_vertex:Kv,clipping_planes_vertex:jv,color_fragment:Qv,color_pars_fragment:e_,color_pars_vertex:t_,color_vertex:n_,common:i_,cube_uv_reflection_fragment:s_,defaultnormal_vertex:r_,displacementmap_pars_vertex:o_,displacementmap_vertex:a_,emissivemap_fragment:l_,emissivemap_pars_fragment:c_,colorspace_fragment:u_,colorspace_pars_fragment:h_,envmap_fragment:d_,envmap_common_pars_fragment:f_,envmap_pars_fragment:p_,envmap_pars_vertex:m_,envmap_physical_pars_fragment:T_,envmap_vertex:g_,fog_vertex:v_,fog_pars_vertex:__,fog_fragment:y_,fog_pars_fragment:x_,gradientmap_pars_fragment:M_,lightmap_pars_fragment:b_,lights_lambert_fragment:S_,lights_lambert_pars_fragment:w_,lights_pars_begin:A_,lights_toon_fragment:E_,lights_toon_pars_fragment:C_,lights_phong_fragment:P_,lights_phong_pars_fragment:R_,lights_physical_fragment:I_,lights_physical_pars_fragment:L_,lights_fragment_begin:N_,lights_fragment_maps:D_,lights_fragment_end:U_,logdepthbuf_fragment:O_,logdepthbuf_pars_fragment:F_,logdepthbuf_pars_vertex:k_,logdepthbuf_vertex:B_,map_fragment:z_,map_pars_fragment:V_,map_particle_fragment:H_,map_particle_pars_fragment:G_,metalnessmap_fragment:W_,metalnessmap_pars_fragment:$_,morphinstance_vertex:X_,morphcolor_vertex:q_,morphnormal_vertex:Y_,morphtarget_pars_vertex:Z_,morphtarget_vertex:J_,normal_fragment_begin:K_,normal_fragment_maps:j_,normal_pars_fragment:Q_,normal_pars_vertex:e0,normal_vertex:t0,normalmap_pars_fragment:n0,clearcoat_normal_fragment_begin:i0,clearcoat_normal_fragment_maps:s0,clearcoat_pars_fragment:r0,iridescence_pars_fragment:o0,opaque_fragment:a0,packing:l0,premultiplied_alpha_fragment:c0,project_vertex:u0,dithering_fragment:h0,dithering_pars_fragment:d0,roughnessmap_fragment:f0,roughnessmap_pars_fragment:p0,shadowmap_pars_fragment:m0,shadowmap_pars_vertex:g0,shadowmap_vertex:v0,shadowmask_pars_fragment:_0,skinbase_vertex:y0,skinning_pars_vertex:x0,skinning_vertex:M0,skinnormal_vertex:b0,specularmap_fragment:S0,specularmap_pars_fragment:w0,tonemapping_fragment:A0,tonemapping_pars_fragment:T0,transmission_fragment:E0,transmission_pars_fragment:C0,uv_pars_fragment:P0,uv_pars_vertex:R0,uv_vertex:I0,worldpos_vertex:L0,background_vert:N0,background_frag:D0,backgroundCube_vert:U0,backgroundCube_frag:O0,cube_vert:F0,cube_frag:k0,depth_vert:B0,depth_frag:z0,distanceRGBA_vert:V0,distanceRGBA_frag:H0,equirect_vert:G0,equirect_frag:W0,linedashed_vert:$0,linedashed_frag:X0,meshbasic_vert:q0,meshbasic_frag:Y0,meshlambert_vert:Z0,meshlambert_frag:J0,meshmatcap_vert:K0,meshmatcap_frag:j0,meshnormal_vert:Q0,meshnormal_frag:ey,meshphong_vert:ty,meshphong_frag:ny,meshphysical_vert:iy,meshphysical_frag:sy,meshtoon_vert:ry,meshtoon_frag:oy,points_vert:ay,points_frag:ly,shadow_vert:cy,shadow_frag:uy,sprite_vert:hy,sprite_frag:dy},Ce={common:{diffuse:{value:new Pe(16777215)},opacity:{value:1},map:{value:null},mapTransform:{value:new Ze},alphaMap:{value:null},alphaMapTransform:{value:new Ze},alphaTest:{value:0}},specularmap:{specularMap:{value:null},specularMapTransform:{value:new Ze}},envmap:{envMap:{value:null},envMapRotation:{value:new Ze},flipEnvMap:{value:-1},reflectivity:{value:1},ior:{value:1.5},refractionRatio:{value:.98}},aomap:{aoMap:{value:null},aoMapIntensity:{value:1},aoMapTransform:{value:new Ze}},lightmap:{lightMap:{value:null},lightMapIntensity:{value:1},lightMapTransform:{value:new Ze}},bumpmap:{bumpMap:{value:null},bumpMapTransform:{value:new Ze},bumpScale:{value:1}},normalmap:{normalMap:{value:null},normalMapTransform:{value:new Ze},normalScale:{value:new se(1,1)}},displacementmap:{displacementMap:{value:null},displacementMapTransform:{value:new Ze},displacementScale:{value:1},displacementBias:{value:0}},emissi
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform int samples;
uniform float weights[ n ];
uniform bool latitudinal;
uniform float dTheta;
uniform float mipInt;
uniform vec3 poleAxis;
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
vec3 getSample( float theta, vec3 axis ) {
float cosTheta = cos( theta );
// Rodrigues' axis-angle rotation
vec3 sampleDirection = vOutputDirection * cosTheta
+ cross( axis, vOutputDirection ) * sin( theta )
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
return bilinearCubeUV( envMap, sampleDirection, mipInt );
}
void main() {
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
}
axis = normalize( axis );
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
for ( int i = 1; i < n; i++ ) {
if ( i >= samples ) {
break;
}
float theta = dTheta * float( i );
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
}
}
`,blending:si,depthTest:!1,depthWrite:!1})}function Ah(){return new Ln({name:"EquirectangularToCubeUV",uniforms:{envMap:{value:null}},vertexShader:pu(),fragmentShader:`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
#include <common>
void main() {
vec3 outputDirection = normalize( vOutputDirection );
vec2 uv = equirectUv( outputDirection );
gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 );
}
`,blending:si,depthTest:!1,depthWrite:!1})}function Th(){return new Ln({name:"CubemapToCubeUV",uniforms:{envMap:{value:null},flipEnvMap:{value:-1}},vertexShader:pu(),fragmentShader:`
precision mediump float;
precision mediump int;
uniform float flipEnvMap;
varying vec3 vOutputDirection;
uniform samplerCube envMap;
void main() {
gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) );
}
`,blending:si,depthTest:!1,depthWrite:!1})}function pu(){return`
precision mediump float;
precision mediump int;
attribute float faceIndex;
varying vec3 vOutputDirection;
// RH coordinate system; PMREM face-indexing convention
vec3 getDirection( vec2 uv, float face ) {
uv = 2.0 * uv - 1.0;
vec3 direction = vec3( uv, 1.0 );
if ( face == 0.0 ) {
direction = direction.zyx; // ( 1, v, u ) pos x
} else if ( face == 1.0 ) {
direction = direction.xzy;
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
} else if ( face == 2.0 ) {
direction.x *= -1.0; // ( -u, v, 1 ) pos z
} else if ( face == 3.0 ) {
direction = direction.zyx;
direction.xz *= -1.0; // ( -1, v, -u ) neg x
} else if ( face == 4.0 ) {
direction = direction.xzy;
direction.xy *= -1.0; // ( -u, -1, v ) neg y
} else if ( face == 5.0 ) {
direction.z *= -1.0; // ( u, v, -1 ) neg z
}
return direction;
}
void main() {
vOutputDirection = getDirection( uv, faceIndex );
gl_Position = vec4( position, 1.0 );
}
`}function by(s){let e=new WeakMap,t=null;function n(a){if(a&&a.isTexture){const l=a.mapping,c=l===yr||l===xr,u=l===ai||l===Ci;if(c||u){let h=e.get(a);const d=h!==void 0?h.texture.pmremVersion:0;if(a.isRenderTargetTexture&&a.pmremVersion!==d)return t===null&&(t=new Ic(s)),h=c?t.fromEquirectangular(a,h):t.fromCubemap(a,h),h.texture.pmremVersion=a.pmremVersion,e.set(a,h),h.texture;if(h!==void 0)return h.texture;{const f=a.image;return c&&f&&f.height>0||u&&f&&i(f)?(t===null&&(t=new Ic(s)),h=c?t.fromEquirectangular(a):t.fromCubemap(a),h.texture.pmremVersion=a.pmremVersion,e.set(a,h),a.addEventListener("dispose",r),h.texture):null}}}return a}function i(a){let l=0;const c=6;for(let u=0;u<c;u++)a[u]!==void 0&&l++;return l===c}function r(a){const l=a.target;l.removeEventListener("dispose",r);const c=e.get(l);c!==void 0&&(e.delete(l),c.dispose())}function o(){e=new WeakMap,t!==null&&(t.dispose(),t=null)}return{get:n,dispose:o}}function Sy(s){const e={};function t(n){if(e[n]!==void 0)return e[n];let i;switch(n){case"WEBGL_depth_texture":i=s.getExtension("WEBGL_depth_texture")||s.getExtension("MOZ_WEBGL_depth_texture")||s.getExtension("WEBKIT_WEBGL_depth_texture");break;case"EXT_texture_filter_anisotropic":i=s.getExtension("EXT_texture_filter_anisotropic")||s.getExtension("MOZ_EXT_texture_filter_anisotropic")||s.getExtension("WEBKIT_EXT_texture_filter_anisotropic");break;case"WEBGL_compressed_texture_s3tc":i=s.getExtension("WEBGL_compressed_texture_s3tc")||s.getExtension("MOZ_WEBGL_compressed_texture_s3tc")||s.getExtension("WEBKIT_WEBGL_compressed_texture_s3tc");break;case"WEBGL_compressed_texture_pvrtc":i=s.getExtension("WEBGL_compressed_texture_pvrtc")||s.getExtension("WEBKIT_WEBGL_compressed_texture_pvrtc");break;default:i=s.getExtension(n)}return e[n]=i,i}return{has:function(n){return t(n)!==null},init:function(){t("EXT_color_buffer_float"),t("WEBGL_clip_cull_distance"),t("OES_texture_float_linear"),t("EXT_color_buffer_half_float"),t("WEBGL_multisampled_render_to_texture"),t("WEBGL_render_shared_exponent")},get:function(n){const i=t(n);return i===null&&uu("THREE.WebGLRenderer: "+n+" extension not supported."),i}}}function wy(s,e,t,n){const i={},r=new WeakMap;function o(h){const d=h.target;d.index!==null&&e.remove(d.index);for(const g in d.attributes)e.remove(d.attributes[g]);for(const g in d.morphAttributes){const v=d.morphAttributes[g];for(let m=0,p=v.length;m<p;m++)e.remove(v[m])}d.removeEventListener("dispose",o),delete i[d.id];const f=r.get(d);f&&(e.remove(f),r.delete(d)),n.releaseStatesOfGeometry(d),d.isInstancedBufferGeometry===!0&&delete d._maxInstanceCount,t.memory.geometries--}function a(h,d){return i[d.id]===!0||(d.addEventListener("dispose",o),i[d.id]=!0,t.memory.geometries++),d}function l(h){const d=h.attributes;for(const g in d)e.update(d[g],s.ARRAY_BUFFER);const f=h.morphAttributes;for(const g in f){const v=f[g];for(let m=0,p=v.length;m<p;m++)e.update(v[m],s.ARRAY_BUFFER)}}function c(h){const d=[],f=h.index,g=h.attributes.position;let v=0;if(f!==null){const y=f.array;v=f.version;for(let _=0,x=y.length;_<x;_+=3){const A=y[_+0],b=y[_+1],E=y[_+2];d.push(A,b,b,E,E,A)}}else if(g!==void 0){const y=g.array;v=g.version;for(let _=0,x=y.length/3-1;_<x;_+=3){const A=_+0,b=_+1,E=_+2;d.push(A,b,b,E,E,A)}}else return;const m=new(sp(d)?fu:du)(d,1);m.version=v;const p=r.get(h);p&&e.remove(p),r.set(h,m)}function u(h){const d=r.get(h);if(d){const f=h.index;f!==null&&d.version<f.version&&c(h)}else c(h);return r.get(h)}return{get:a,update:l,getWireframeAttribute:u}}function Ay(s,e,t){let n;function i(d){n=d}let r,o;function a(d){r=d.type,o=d.bytesPerElement}function l(d,f){s.drawElements(n,f,r,d*o),t.update(f,n,1)}function c(d,f,g){g!==0&&(s.drawElementsInstanced(n,f,r,d*o,g),t.update(f,n,g))}function u(d,f,g){if(g===0)return;const v=e.get("WEBGL_multi_draw");if(v===null)for(let m=0;m<g;m++)this.render(d[m]/o,f[m]);else{v.multiDrawElementsWEBGL(n,f,0,r,d,0,g);let m=0;for(let p=0;p<g;p++)m+=f[p];t.update(m,n,1)}}function h(d,f,g,v){if(g===0)return;const m=e.get("WEBGL_multi_draw");if(m===null)for(let p=0;p<d.length;p++)c(d[p]/o,f[p]
`),n=[],i=Math.max(e-6,0),r=Math.min(e+6,t.length);for(let o=i;o<r;o++){const a=o+1;n.push(`${a===e?">":" "} ${a}: ${t[o]}`)}return n.join(`
`)}function bx(s){const e=ht.getPrimaries(ht.workingColorSpace),t=ht.getPrimaries(s);let n;switch(e===t?n="":e===Cr&&t===Er?n="LinearDisplayP3ToLinearSRGB":e===Er&&t===Cr&&(n="LinearSRGBToLinearDisplayP3"),s){case ci:case $r:return[n,"LinearTransferOETF"];case ln:case Ra:return[n,"sRGBTransferOETF"];default:return console.warn("THREE.WebGLProgram: Unsupported color space:",s),[n,"LinearTransferOETF"]}}function Dh(s,e,t){const n=s.getShaderParameter(e,s.COMPILE_STATUS),i=s.getShaderInfoLog(e).trim();if(n&&i==="")return"";const r=/ERROR: 0:(\d+)/.exec(i);if(r){const o=parseInt(r[1]);return t.toUpperCase()+`
`+i+`
`+Mx(s.getShaderSource(e),o)}else return i}function Sx(s,e){const t=bx(e);return`vec4 ${s}( vec4 value ) { return ${t[0]}( ${t[1]}( value ) ); }`}function wx(s,e){let t;switch(e){case Ef:t="Linear";break;case Cf:t="Reinhard";break;case Pf:t="OptimizedCineon";break;case Ea:t="ACESFilmic";break;case If:t="AgX";break;case Lf:t="Neutral";break;case Rf:t="Custom";break;default:console.warn("THREE.WebGLProgram: Unsupported toneMapping:",e),t="Linear"}return"vec3 "+s+"( vec3 color ) { return "+t+"ToneMapping( color ); }"}function Ax(s){return[s.extensionClipCullDistance?"#extension GL_ANGLE_clip_cull_distance : require":"",s.extensionMultiDraw?"#extension GL_ANGLE_multi_draw : require":""].filter(ur).join(`
`)}function Tx(s){const e=[];for(const t in s){const n=s[t];n!==!1&&e.push("#define "+t+" "+n)}return e.join(`
`)}function Ex(s,e){const t={},n=s.getProgramParameter(e,s.ACTIVE_ATTRIBUTES);for(let i=0;i<n;i++){const r=s.getActiveAttrib(e,i),o=r.name;let a=1;r.type===s.FLOAT_MAT2&&(a=2),r.type===s.FLOAT_MAT3&&(a=3),r.type===s.FLOAT_MAT4&&(a=4),t[o]={type:r.type,location:s.getAttribLocation(e,o),locationSize:a}}return t}function ur(s){return s!==""}function Uh(s,e){const t=e.numSpotLightShadows+e.numSpotLightMaps-e.numSpotLightShadowsWithMaps;return s.replace(/NUM_DIR_LIGHTS/g,e.numDirLights).replace(/NUM_SPOT_LIGHTS/g,e.numSpotLights).replace(/NUM_SPOT_LIGHT_MAPS/g,e.numSpotLightMaps).replace(/NUM_SPOT_LIGHT_COORDS/g,t).replace(/NUM_RECT_AREA_LIGHTS/g,e.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g,e.numPointLights).replace(/NUM_HEMI_LIGHTS/g,e.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g,e.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS/g,e.numSpotLightShadowsWithMaps).replace(/NUM_SPOT_LIGHT_SHADOWS/g,e.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g,e.numPointLightShadows)}function Oh(s,e){return s.replace(/NUM_CLIPPING_PLANES/g,e.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g,e.numClippingPlanes-e.numClipIntersection)}const Cx=/^[ \t]*#include +<([\w\d./]+)>/gm;function Lc(s){return s.replace(Cx,Rx)}const Px=new Map;function Rx(s,e){let t=nt[e];if(t===void 0){const n=Px.get(e);if(n!==void 0)t=nt[n],console.warn('THREE.WebGLRenderer: Shader chunk "%s" has been deprecated. Use "%s" instead.',e,n);else throw new Error("Can not resolve #include <"+e+">")}return Lc(t)}const Ix=/#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;function Fh(s){return s.replace(Ix,Lx)}function Lx(s,e,t,n){let i="";for(let r=parseInt(e);r<parseInt(t);r++)i+=n.replace(/\[\s*i\s*\]/g,"[ "+r+" ]").replace(/UNROLLED_LOOP_INDEX/g,r);return i}function kh(s){let e=`precision ${s.precision} float;
precision ${s.precision} int;
precision ${s.precision} sampler2D;
precision ${s.precision} samplerCube;
precision ${s.precision} sampler3D;
precision ${s.precision} sampler2DArray;
precision ${s.precision} sampler2DShadow;
precision ${s.precision} samplerCubeShadow;
precision ${s.precision} sampler2DArrayShadow;
precision ${s.precision} isampler2D;
precision ${s.precision} isampler3D;
precision ${s.precision} isamplerCube;
precision ${s.precision} isampler2DArray;
precision ${s.precision} usampler2D;
precision ${s.precision} usampler3D;
precision ${s.precision} usamplerCube;
precision ${s.precision} usampler2DArray;
`;return s.precision==="highp"?e+=`
#define HIGH_PRECISION`:s.precision==="mediump"?e+=`
#define MEDIUM_PRECISION`:s.precision==="lowp"&&(e+=`
#define LOW_PRECISION`),e}function Nx(s){let e="SHADOWMAP_TYPE_BASIC";return s.shadowMapType===Kc?e="SHADOWMAP_TYPE_PCF":s.shadowMapType===jc?e="SHADOWMAP_TYPE_PCF_SOFT":s.shadowMapType===kn&&(e="SHADOWMAP_TYPE_VSM"),e}function Dx(s){let e="ENVMAP_TYPE_CUBE";if(s.envMap)switch(s.envMapMode){case ai:case Ci:e="ENVMAP_TYPE_CUBE";break;case Ws:e="ENVMAP_TYPE_CUBE_UV";break}return e}function Ux(s){let e="ENVMAP_MODE_REFLECTION";if(s.envMap)switch(s.envMapMode){case Ci:e="ENVMAP_MODE_REFRACTION";break}return e}function Ox(s){let e="ENVMAP_BLENDING_NONE";if(s.envMap)switch(s.combine){case Gr:e="ENVMAP_BLENDING_MULTIPLY";break;case Af:e="ENVMAP_BLENDING_MIX";break;case Tf:e="ENVMAP_BLENDING_ADD";break}return e}function Fx(s){const e=s.envMapCubeUVHeight;if(e===null)return null;const t=Math.log2(e)-2,n=1/e;return{texelWidth:1/(3*Math.max(Math.pow(2,t),7*16)),texelHeight:n,maxMip:t}}function kx(s,e,t,n){const i=s.getContext(),r=t.defines;let o=t.vertexShader,a=t.fragmentShader;const l=Nx(t),c=Dx(t),u=Ux(t),h=Ox(t),d=Fx(t),f=Ax(t),g=Tx(r),v=i.createProgram();let m,p,y=t.glslVersion?"#version "+t.glslVersion+`
`:"";t.isRawShaderMaterial?(m=["#define SHADER_TYPE "+t.shaderType,"#define SHADER_NAME "+t.shaderName,g].filter(ur).join(`
`),m.length>0&&(m+=`
`),p=["#define SHADER_TYPE "+t.shaderType,"#define SHADER_NAME "+t.shaderName,g].filter(ur).join(`
`),p.length>0&&(p+=`
`)):(m=[kh(t),"#define SHADER_TYPE "+t.shaderType,"#define SHADER_NAME "+t.shaderName,g,t.extensionClipCullDistance?"#define USE_CLIP_DISTANCE":"",t.batching?"#define USE_BATCHING":"",t.batchingColor?"#define USE_BATCHING_COLOR":"",t.instancing?"#define USE_INSTANCING":"",t.instancingColor?"#define USE_INSTANCING_COLOR":"",t.instancingMorph?"#define USE_INSTANCING_MORPH":"",t.useFog&&t.fog?"#define USE_FOG":"",t.useFog&&t.fogExp2?"#define FOG_EXP2":"",t.map?"#define USE_MAP":"",t.envMap?"#define USE_ENVMAP":"",t.envMap?"#define "+u:"",t.lightMap?"#define USE_LIGHTMAP":"",t.aoMap?"#define USE_AOMAP":"",t.bumpMap?"#define USE_BUMPMAP":"",t.normalMap?"#define USE_NORMALMAP":"",t.normalMapObjectSpace?"#define USE_NORMALMAP_OBJECTSPACE":"",t.normalMapTangentSpace?"#define USE_NORMALMAP_TANGENTSPACE":"",t.displacementMap?"#define USE_DISPLACEMENTMAP":"",t.emissiveMap?"#define USE_EMISSIVEMAP":"",t.anisotropy?"#define USE_ANISOTROPY":"",t.anisotropyMap?"#define USE_ANISOTROPYMAP":"",t.clearcoatMap?"#define USE_CLEARCOATMAP":"",t.clearcoatRoughnessMap?"#define USE_CLEARCOAT_ROUGHNESSMAP":"",t.clearcoatNormalMap?"#define USE_CLEARCOAT_NORMALMAP":"",t.iridescenceMap?"#define USE_IRIDESCENCEMAP":"",t.iridescenceThicknessMap?"#define USE_IRIDESCENCE_THICKNESSMAP":"",t.specularMap?"#define USE_SPECULARMAP":"",t.specularColorMap?"#define USE_SPECULAR_COLORMAP":"",t.specularIntensityMap?"#define USE_SPECULAR_INTENSITYMAP":"",t.roughnessMap?"#define USE_ROUGHNESSMAP":"",t.metalnessMap?"#define USE_METALNESSMAP":"",t.alphaMap?"#define USE_ALPHAMAP":"",t.alphaHash?"#define USE_ALPHAHASH":"",t.transmission?"#define USE_TRANSMISSION":"",t.transmissionMap?"#define USE_TRANSMISSIONMAP":"",t.thicknessMap?"#define USE_THICKNESSMAP":"",t.sheenColorMap?"#define USE_SHEEN_COLORMAP":"",t.sheenRoughnessMap?"#define USE_SHEEN_ROUGHNESSMAP":"",t.mapUv?"#define MAP_UV "+t.mapUv:"",t.alphaMapUv?"#define ALPHAMAP_UV "+t.alphaMapUv:"",t.lightMapUv?"#define LIGHTMAP_UV "+t.lightMapUv:"",t.aoMapUv?"#define AOMAP_UV "+t.aoMapUv:"",t.emissiveMapUv?"#define EMISSIVEMAP_UV "+t.emissiveMapUv:"",t.bumpMapUv?"#define BUMPMAP_UV "+t.bumpMapUv:"",t.normalMapUv?"#define NORMALMAP_UV "+t.normalMapUv:"",t.displacementMapUv?"#define DISPLACEMENTMAP_UV "+t.displacementMapUv:"",t.metalnessMapUv?"#define METALNESSMAP_UV "+t.metalnessMapUv:"",t.roughnessMapUv?"#define ROUGHNESSMAP_UV "+t.roughnessMapUv:"",t.anisotropyMapUv?"#define ANISOTROPYMAP_UV "+t.anisotropyMapUv:"",t.clearcoatMapUv?"#define CLEARCOATMAP_UV "+t.clearcoatMapUv:"",t.clearcoatNormalMapUv?"#define CLEARCOAT_NORMALMAP_UV "+t.clearcoatNormalMapUv:"",t.clearcoatRoughnessMapUv?"#define CLEARCOAT_ROUGHNESSMAP_UV "+t.clearcoatRoughnessMapUv:"",t.iridescenceMapUv?"#define IRIDESCENCEMAP_UV "+t.iridescenceMapUv:"",t.iridescenceThicknessMapUv?"#define IRIDESCENCE_THICKNESSMAP_UV "+t.iridescenceThicknessMapUv:"",t.sheenColorMapUv?"#define SHEEN_COLORMAP_UV "+t.sheenColorMapUv:"",t.sheenRoughnessMapUv?"#define SHEEN_ROUGHNESSMAP_UV "+t.sheenRoughnessMapUv:"",t.specularMapUv?"#define SPECULARMAP_UV "+t.specularMapUv:"",t.specularColorMapUv?"#define SPECULAR_COLORMAP_UV "+t.specularColorMapUv:"",t.specularIntensityMapUv?"#define SPECULAR_INTENSITYMAP_UV "+t.specularIntensityMapUv:"",t.transmissionMapUv?"#define TRANSMISSIONMAP_UV "+t.transmissionMapUv:"",t.thicknessMapUv?"#define THICKNESSMAP_UV "+t.thicknessMapUv:"",t.vertexTangents&&t.flatShading===!1?"#define USE_TANGENT":"",t.vertexColors?"#define USE_COLOR":"",t.vertexAlphas?"#define USE_COLOR_ALPHA":"",t.vertexUv1s?"#define USE_UV1":"",t.vertexUv2s?"#define USE_UV2":"",t.vertexUv3s?"#define USE_UV3":"",t.pointsUvs?"#define USE_POINTS_UV":"",t.flatShading?"#define FLAT_SHADED":"",t.skinning?"#define USE_SKINNING":"",t.morphTargets?"#define USE_MORPHTARGETS":"",t.morphNormals&&t.flatShading===!1?"#define USE_MORPHNORMALS":"",t.morphColors?"#define USE_MORPHCOLORS":"",t.morphTargetsCount>0?"#define MORPHTARGETS_TEXTURE_STRIDE "+t.morphTextureStride:"",t.morphTargetsCount>0?"#define MORPHTARGETS_COUNT "+t.morphTargetsCount:"",t.doubleSided?"#define DOUBLE_SIDED":"",
`].filter(ur).join(`
`),p=[kh(t),"#define SHADER_TYPE "+t.shaderType,"#define SHADER_NAME "+t.shaderName,g,t.useFog&&t.fog?"#define USE_FOG":"",t.useFog&&t.fogExp2?"#define FOG_EXP2":"",t.alphaToCoverage?"#define ALPHA_TO_COVERAGE":"",t.map?"#define USE_MAP":"",t.matcap?"#define USE_MATCAP":"",t.envMap?"#define USE_ENVMAP":"",t.envMap?"#define "+c:"",t.envMap?"#define "+u:"",t.envMap?"#define "+h:"",d?"#define CUBEUV_TEXEL_WIDTH "+d.texelWidth:"",d?"#define CUBEUV_TEXEL_HEIGHT "+d.texelHeight:"",d?"#define CUBEUV_MAX_MIP "+d.maxMip+".0":"",t.lightMap?"#define USE_LIGHTMAP":"",t.aoMap?"#define USE_AOMAP":"",t.bumpMap?"#define USE_BUMPMAP":"",t.normalMap?"#define USE_NORMALMAP":"",t.normalMapObjectSpace?"#define USE_NORMALMAP_OBJECTSPACE":"",t.normalMapTangentSpace?"#define USE_NORMALMAP_TANGENTSPACE":"",t.emissiveMap?"#define USE_EMISSIVEMAP":"",t.anisotropy?"#define USE_ANISOTROPY":"",t.anisotropyMap?"#define USE_ANISOTROPYMAP":"",t.clearcoat?"#define USE_CLEARCOAT":"",t.clearcoatMap?"#define USE_CLEARCOATMAP":"",t.clearcoatRoughnessMap?"#define USE_CLEARCOAT_ROUGHNESSMAP":"",t.clearcoatNormalMap?"#define USE_CLEARCOAT_NORMALMAP":"",t.dispersion?"#define USE_DISPERSION":"",t.iridescence?"#define USE_IRIDESCENCE":"",t.iridescenceMap?"#define USE_IRIDESCENCEMAP":"",t.iridescenceThicknessMap?"#define USE_IRIDESCENCE_THICKNESSMAP":"",t.specularMap?"#define USE_SPECULARMAP":"",t.specularColorMap?"#define USE_SPECULAR_COLORMAP":"",t.specularIntensityMap?"#define USE_SPECULAR_INTENSITYMAP":"",t.roughnessMap?"#define USE_ROUGHNESSMAP":"",t.metalnessMap?"#define USE_METALNESSMAP":"",t.alphaMap?"#define USE_ALPHAMAP":"",t.alphaTest?"#define USE_ALPHATEST":"",t.alphaHash?"#define USE_ALPHAHASH":"",t.sheen?"#define USE_SHEEN":"",t.sheenColorMap?"#define USE_SHEEN_COLORMAP":"",t.sheenRoughnessMap?"#define USE_SHEEN_ROUGHNESSMAP":"",t.transmission?"#define USE_TRANSMISSION":"",t.transmissionMap?"#define USE_TRANSMISSIONMAP":"",t.thicknessMap?"#define USE_THICKNESSMAP":"",t.vertexTangents&&t.flatShading===!1?"#define USE_TANGENT":"",t.vertexColors||t.instancingColor||t.batchingColor?"#define USE_COLOR":"",t.vertexAlphas?"#define USE_COLOR_ALPHA":"",t.vertexUv1s?"#define USE_UV1":"",t.vertexUv2s?"#define USE_UV2":"",t.vertexUv3s?"#define USE_UV3":"",t.pointsUvs?"#define USE_POINTS_UV":"",t.gradientMap?"#define USE_GRADIENTMAP":"",t.flatShading?"#define FLAT_SHADED":"",t.doubleSided?"#define DOUBLE_SIDED":"",t.flipSided?"#define FLIP_SIDED":"",t.shadowMapEnabled?"#define USE_SHADOWMAP":"",t.shadowMapEnabled?"#define "+l:"",t.premultipliedAlpha?"#define PREMULTIPLIED_ALPHA":"",t.numLightProbes>0?"#define USE_LIGHT_PROBES":"",t.decodeVideoTexture?"#define DECODE_VIDEO_TEXTURE":"",t.logarithmicDepthBuffer?"#define USE_LOGDEPTHBUF":"","uniform mat4 viewMatrix;","uniform vec3 cameraPosition;","uniform bool isOrthographic;",t.toneMapping!==Hn?"#define TONE_MAPPING":"",t.toneMapping!==Hn?nt.tonemapping_pars_fragment:"",t.toneMapping!==Hn?wx("toneMapping",t.toneMapping):"",t.dithering?"#define DITHERING":"",t.opaque?"#define OPAQUE":"",nt.colorspace_pars_fragment,Sx("linearToOutputTexel",t.outputColorSpace),t.useDepthPacking?"#define DEPTH_PACKING "+t.depthPacking:"",`
`].filter(ur).join(`
`)),o=Lc(o),o=Uh(o,t),o=Oh(o,t),a=Lc(a),a=Uh(a,t),a=Oh(a,t),o=Fh(o),a=Fh(a),t.isRawShaderMaterial!==!0&&(y=`#version 300 es
`,m=[f,"#define attribute in","#define varying out","#define texture2D texture"].join(`
`)+`
`+m,p=["#define varying in",t.glslVersion===Rc?"":"layout(location = 0) out highp vec4 pc_fragColor;",t.glslVersion===Rc?"":"#define gl_FragColor pc_fragColor","#define gl_FragDepthEXT gl_FragDepth","#define texture2D texture","#define textureCube texture","#define texture2DProj textureProj","#define texture2DLodEXT textureLod","#define texture2DProjLodEXT textureProjLod","#define textureCubeLodEXT textureLod","#define texture2DGradEXT textureGrad","#define texture2DProjGradEXT textureProjGrad","#define textureCubeGradEXT textureGrad"].join(`
`)+`
`+p);const _=y+m+o,x=y+p+a,A=Nh(i,i.VERTEX_SHADER,_),b=Nh(i,i.FRAGMENT_SHADER,x);i.attachShader(v,A),i.attachShader(v,b),t.index0AttributeName!==void 0?i.bindAttribLocation(v,0,t.index0AttributeName):t.morphTargets===!0&&i.bindAttribLocation(v,0,"position"),i.linkProgram(v);function E(F){if(s.debug.checkShaderErrors){const V=i.getProgramInfoLog(v).trim(),G=i.getShaderInfoLog(A).trim(),q=i.getShaderInfoLog(b).trim();let ae=!0,Q=!0;if(i.getProgramParameter(v,i.LINK_STATUS)===!1)if(ae=!1,typeof s.debug.onShaderError=="function")s.debug.onShaderError(i,v,A,b);else{const oe=Dh(i,A,"vertex"),B=Dh(i,b,"fragment");console.error("THREE.WebGLProgram: Shader Error "+i.getError()+" - VALIDATE_STATUS "+i.getProgramParameter(v,i.VALIDATE_STATUS)+`
Material Name: `+F.name+`
Material Type: `+F.type+`
Program Info Log: `+V+`
`+oe+`
`+B)}else V!==""?console.warn("THREE.WebGLProgram: Program Info Log:",V):(G===""||q==="")&&(Q=!1);Q&&(F.diagnostics={runnable:ae,programLog:V,vertexShader:{log:G,prefix:m},fragmentShader:{log:q,prefix:p}})}i.deleteShader(A),i.deleteShader(b),I=new ua(i,v),w=Ex(i,v)}let I;this.getUniforms=function(){return I===void 0&&E(this),I};let w;this.getAttributes=function(){return w===void 0&&E(this),w};let M=t.rendererExtensionParallelShaderCompile===!1;return this.isReady=function(){return M===!1&&(M=i.getProgramParameter(v,yx)),M},this.destroy=function(){n.releaseStatesOfProgram(this),i.deleteProgram(v),this.program=void 0},this.type=t.shaderType,this.name=t.shaderName,this.id=xx++,this.cacheKey=e,this.usedTimes=1,this.program=v,this.vertexShader=A,this.fragmentShader=b,this}let Bx=0;class zx{constructor(){this.shaderCache=new Map,this.materialCache=new Map}update(e){const t=e.vertexShader,n=e.fragmentShader,i=this._getShaderStage(t),r=this._getShaderStage(n),o=this._getShaderCacheForMaterial(e);return o.has(i)===!1&&(o.add(i),i.usedTimes++),o.has(r)===!1&&(o.add(r),r.usedTimes++),this}remove(e){const t=this.materialCache.get(e);for(const n of t)n.usedTimes--,n.usedTimes===0&&this.shaderCache.delete(n.code);return this.materialCache.delete(e),this}getVertexShaderID(e){return this._getShaderStage(e.vertexShader).id}getFragmentShaderID(e){return this._getShaderStage(e.fragmentShader).id}dispose(){this.shaderCache.clear(),this.materialCache.clear()}_getShaderCacheForMaterial(e){const t=this.materialCache;let n=t.get(e);return n===void 0&&(n=new Set,t.set(e,n)),n}_getShaderStage(e){const t=this.shaderCache;let n=t.get(e);return n===void 0&&(n=new Vx(e),t.set(e,n)),n}}class Vx{constructor(e){this.id=Bx++,this.code=e,this.usedTimes=0}}function Hx(s,e,t,n,i,r,o){const a=new La,l=new zx,c=new Set,u=[],h=i.logarithmicDepthBuffer,d=i.vertexTextures;let f=i.precision;const g={MeshDepthMaterial:"depth",MeshDistanceMaterial:"distanceRGBA",MeshNormalMaterial:"normal",MeshBasicMaterial:"basic",MeshLambertMaterial:"lambert",MeshPhongMaterial:"phong",MeshToonMaterial:"toon",MeshStandardMaterial:"physical",MeshPhysicalMaterial:"physical",MeshMatcapMaterial:"matcap",LineBasicMaterial:"basic",LineDashedMaterial:"dashed",PointsMaterial:"points",ShadowMaterial:"shadow",SpriteMaterial:"sprite"};function v(w){return c.add(w),w===0?"uv":`uv${w}`}function m(w,M,F,V,G){const q=V.fog,ae=G.geometry,Q=w.isMeshStandardMaterial?V.environment:null,oe=(w.isMeshStandardMaterial?t:e).get(w.envMap||Q),B=oe&&oe.mapping===Ws?oe.image.height:null,Me=g[w.type];w.precision!==null&&(f=i.getMaxPrecision(w.precision),f!==w.precision&&console.warn("THREE.WebGLProgram.getParameters:",w.precision,"not supported, using",f,"instead."));const be=ae.morphAttributes.position||ae.morphAttributes.normal||ae.morphAttributes.color,Ae=be!==void 0?be.length:0;let ge=0;ae.morphAttributes.position!==void 0&&(ge=1),ae.morphAttributes.normal!==void 0&&(ge=2),ae.morphAttributes.color!==void 0&&(ge=3);let ze,U,D,R;if(Me){const vt=Tn[Me];ze=vt.vertexShader,U=vt.fragmentShader}else ze=w.vertexShader,U=w.fragmentShader,l.update(w),D=l.getVertexShaderID(w),R=l.getFragmentShaderID(w);const T=s.getRenderTarget(),ie=G.isInstancedMesh===!0,he=G.isBatchedMesh===!0,J=!!w.map,L=!!w.matcap,X=!!oe,K=!!w.aoMap,H=!!w.lightMap,$=!!w.bumpMap,te=!!w.normalMap,le=!!w.displacementMap,k=!!w.emissiveMap,O=!!w.metalnessMap,P=!!w.roughnessMap,S=w.anisotropy>0,ee=w.clearcoat>0,pe=w.dispersion>0,ce=w.iridescence>0,ve=w.sheen>0,Ve=w.transmission>0,Ee=S&&!!w.anisotropyMap,Te=ee&&!!w.clearcoatMap,Qe=ee&&!!w.clearcoatNormalMap,xe=ee&&!!w.clearcoatRoughnessMap,Ue=ce&&!!w.iridescenceMap,st=ce&&!!w.iridescenceThicknessMap,Je=ve&&!!w.sheenColorMap,Re=ve&&!!w.sheenRoughnessMap,rt=!!w.specularMap,at=!!w.specularColorMap,Rt=!!w.specularIntensityMap,z=Ve&&!!w.transmissionMap,Ie=Ve&&!!w.thicknessMap,de=!!w.gradientMap,_e=!!w.alphaMap,we=w.alphaTest>0,et=!!w.alphaHash,ut=!!w.extensions;let It=Hn;w.toneMapped&&(T===null||T.isXRRenderTarget===!0)&&(It=s.toneMapping);const Bt={shaderID:Me,shaderType:w.type,shaderName:w.name,vertexSha
gl_Position = vec4( position, 1.0 );
}`,Qx=`uniform sampler2D shadow_pass;
uniform vec2 resolution;
uniform float radius;
#include <packing>
void main() {
const float samples = float( VSM_SAMPLES );
float mean = 0.0;
float squared_mean = 0.0;
float uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );
float uvStart = samples <= 1.0 ? 0.0 : - 1.0;
for ( float i = 0.0; i < samples; i ++ ) {
float uvOffset = uvStart + i * uvStride;
#ifdef HORIZONTAL_PASS
vec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );
mean += distribution.x;
squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;
#else
float depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );
mean += depth;
squared_mean += depth * depth;
#endif
}
mean = mean / samples;
squared_mean = squared_mean / samples;
float std_dev = sqrt( squared_mean - mean * mean );
gl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );
}`;function eM(s,e,t){let n=new Yr;const i=new se,r=new se,o=new gt,a=new gu({depthPacking:qf}),l=new vu,c={},u=t.maxTextureSize,h={[oi]:nn,[nn]:oi,[En]:En},d=new Ln({defines:{VSM_SAMPLES:8},uniforms:{shadow_pass:{value:null},resolution:{value:new se},radius:{value:4}},vertexShader:jx,fragmentShader:Qx}),f=d.clone();f.defines.HORIZONTAL_PASS=1;const g=new it;g.setAttribute("position",new pt(new Float32Array([-1,-1,.5,3,-1,.5,-1,3,.5]),3));const v=new Nt(g,d),m=this;this.enabled=!1,this.autoUpdate=!0,this.needsUpdate=!1,this.type=Kc;let p=this.type;this.render=function(b,E,I){if(m.enabled===!1||m.autoUpdate===!1&&m.needsUpdate===!1||b.length===0)return;const w=s.getRenderTarget(),M=s.getActiveCubeFace(),F=s.getActiveMipmapLevel(),V=s.state;V.setBlending(si),V.buffers.color.setClear(1,1,1,1),V.buffers.depth.setTest(!0),V.setScissorTest(!1);const G=p!==kn&&this.type===kn,q=p===kn&&this.type!==kn;for(let ae=0,Q=b.length;ae<Q;ae++){const oe=b[ae],B=oe.shadow;if(B===void 0){console.warn("THREE.WebGLShadowMap:",oe,"has no shadow.");continue}if(B.autoUpdate===!1&&B.needsUpdate===!1)continue;i.copy(B.mapSize);const Me=B.getFrameExtents();if(i.multiply(Me),r.copy(B.mapSize),(i.x>u||i.y>u)&&(i.x>u&&(r.x=Math.floor(u/Me.x),i.x=r.x*Me.x,B.mapSize.x=r.x),i.y>u&&(r.y=Math.floor(u/Me.y),i.y=r.y*Me.y,B.mapSize.y=r.y)),B.map===null||G===!0||q===!0){const Ae=this.type!==kn?{minFilter:Gt,magFilter:Gt}:{};B.map!==null&&B.map.dispose(),B.map=new In(i.x,i.y,Ae),B.map.texture.name=oe.name+".shadowMap",B.camera.updateProjectionMatrix()}s.setRenderTarget(B.map),s.clear();const be=B.getViewportCount();for(let Ae=0;Ae<be;Ae++){const ge=B.getViewport(Ae);o.set(r.x*ge.x,r.y*ge.y,r.x*ge.z,r.y*ge.w),V.viewport(o),B.updateMatrices(oe,Ae),n=B.getFrustum(),x(E,I,B.camera,oe,this.type)}B.isPointLightShadow!==!0&&this.type===kn&&y(B,I),B.needsUpdate=!1}p=this.type,m.needsUpdate=!1,s.setRenderTarget(w,M,F)};function y(b,E){const I=e.update(v);d.defines.VSM_SAMPLES!==b.blurSamples&&(d.defines.VSM_SAMPLES=b.blurSamples,f.defines.VSM_SAMPLES=b.blurSamples,d.needsUpdate=!0,f.needsUpdate=!0),b.mapPass===null&&(b.mapPass=new In(i.x,i.y)),d.uniforms.shadow_pass.value=b.map.texture,d.uniforms.resolution.value=b.mapSize,d.uniforms.radius.value=b.radius,s.setRenderTarget(b.mapPass),s.clear(),s.renderBufferDirect(E,null,I,d,v,null),f.uniforms.shadow_pass.value=b.mapPass.texture,f.uniforms.resolution.value=b.mapSize,f.uniforms.radius.value=b.radius,s.setRenderTarget(b.map),s.clear(),s.renderBufferDirect(E,null,I,f,v,null)}function _(b,E,I,w){let M=null;const F=I.isPointLight===!0?b.customDistanceMaterial:b.customDepthMaterial;if(F!==void 0)M=F;else if(M=I.isPointLight===!0?l:a,s.localClippingEnabled&&E.clipShadows===!0&&Array.isArray(E.clippingPlanes)&&E.clippingPlanes.length!==0||E.displacementMap&&E.displacementScale!==0||E.alphaMap&&E.alphaTest>0||E.map&&E.alphaTest>0){const V=M.uuid,G=E.uuid;let q=c[V];q===void 0&&(q={},c[V]=q);let ae=q[G];ae===void 0&&(ae=M.clone(),q[G]=ae,E.addEventListener("dispose",A)),M=ae}if(M.visible=E.visible,M.wireframe=E.wireframe,w===kn?M.side=E.shadowSide!==null?E.shadowSide:E.side:M.side=E.shadowSide!==null?E.shadowSide:h[E.side],M.alphaMap=E.alphaMap,M.alphaTest=E.alphaTest,M.map=E.map,M.clipShadows=E.clipShadows,M.clippingPlanes=E.clippingPlanes,M.clipIntersection=E.clipIntersection,M.displacementMap=E.displacementMap,M.displacementScale=E.displacementScale,M.displacementBias=E.displacementBias,M.wireframeLinewidth=E.wireframeLinewidth,M.linewidth=E.linewidth,I.isPointLight===!0&&M.isMeshDistanceMaterial===!0){const V=s.properties.get(M);V.light=I}return M}function x(b,E,I,w,M){if(b.visible===!1)return;if(b.layers.test(E.layers)&&(b.isMesh||b.isLine||b.isPoints)&&(b.castShadow||b.receiveShadow&&M===kn)&&(!b.frustumCulled||n.intersectsObject(b))){b.modelViewMatrix.multiplyMatrices(I.matrixWorldInverse,b.matrixWorld);const G=e.update(b),q=b.material;if(Array.isArray(q)){const ae=G.groups;for(let Q=0,oe=ae.length;Q<oe;Q++){const B=ae[Q],Me=q[B.materialIndex];if(Me&&Me.visible){const be=_(b,Me,w,M);b.onBeforeShadow(s,b,E,I,G,be,B),s.rend
void main() {
gl_Position = vec4( position, 1.0 );
}`,rM=`
uniform sampler2DArray depthColor;
uniform float depthWidth;
uniform float depthHeight;
void main() {
vec2 coord = vec2( gl_FragCoord.x / depthWidth, gl_FragCoord.y / depthHeight );
if ( coord.x >= 1.0 ) {
gl_FragDepth = texture( depthColor, vec3( coord.x - 1.0, coord.y, 1 ) ).r;
} else {
gl_FragDepth = texture( depthColor, vec3( coord.x, coord.y, 0 ) ).r;
}
}`;class oM{constructor(){this.texture=null,this.mesh=null,this.depthNear=0,this.depthFar=0}init(e,t,n){if(this.texture===null){const i=new Pt,r=e.properties.get(i);r.__webglTexture=t.texture,(t.depthNear!=n.depthNear||t.depthFar!=n.depthFar)&&(this.depthNear=t.depthNear,this.depthFar=t.depthFar),this.texture=i}}getMesh(e){if(this.texture!==null&&this.mesh===null){const t=e.cameras[0].viewport,n=new Ln({vertexShader:sM,fragmentShader:rM,uniforms:{depthColor:{value:this.texture},depthWidth:{value:t.z},depthHeight:{value:t.w}}});this.mesh=new Nt(new Xs(20,20),n)}return this.mesh}reset(){this.texture=null,this.mesh=null}}class aM extends ui{constructor(e,t){super();const n=this;let i=null,r=1,o=null,a="local-floor",l=1,c=null,u=null,h=null,d=null,f=null,g=null;const v=new oM,m=t.getContextAttributes();let p=null,y=null;const _=[],x=[],A=new se;let b=null;const E=new Ut;E.layers.enable(1),E.viewport=new gt;const I=new Ut;I.layers.enable(2),I.viewport=new gt;const w=[E,I],M=new xp;M.layers.enable(1),M.layers.enable(2);let F=null,V=null;this.cameraAutoUpdate=!0,this.enabled=!1,this.isPresenting=!1,this.getController=function(U){let D=_[U];return D===void 0&&(D=new Nl,_[U]=D),D.getTargetRaySpace()},this.getControllerGrip=function(U){let D=_[U];return D===void 0&&(D=new Nl,_[U]=D),D.getGripSpace()},this.getHand=function(U){let D=_[U];return D===void 0&&(D=new Nl,_[U]=D),D.getHandSpace()};function G(U){const D=x.indexOf(U.inputSource);if(D===-1)return;const R=_[D];R!==void 0&&(R.update(U.inputSource,U.frame,c||o),R.dispatchEvent({type:U.type,data:U.inputSource}))}function q(){i.removeEventListener("select",G),i.removeEventListener("selectstart",G),i.removeEventListener("selectend",G),i.removeEventListener("squeeze",G),i.removeEventListener("squeezestart",G),i.removeEventListener("squeezeend",G),i.removeEventListener("end",q),i.removeEventListener("inputsourceschange",ae);for(let U=0;U<_.length;U++){const D=x[U];D!==null&&(x[U]=null,_[U].disconnect(D))}F=null,V=null,v.reset(),e.setRenderTarget(p),f=null,d=null,h=null,i=null,y=null,ze.stop(),n.isPresenting=!1,e.setPixelRatio(b),e.setSize(A.width,A.height,!1),n.dispatchEvent({type:"sessionend"})}this.setFramebufferScaleFactor=function(U){r=U,n.isPresenting===!0&&console.warn("THREE.WebXRManager: Cannot change framebuffer scale while presenting.")},this.setReferenceSpaceType=function(U){a=U,n.isPresenting===!0&&console.warn("THREE.WebXRManager: Cannot change reference space type while presenting.")},this.getReferenceSpace=function(){return c||o},this.setReferenceSpace=function(U){c=U},this.getBaseLayer=function(){return d!==null?d:f},this.getBinding=function(){return h},this.getFrame=function(){return g},this.getSession=function(){return i},this.setSession=async function(U){if(i=U,i!==null){if(p=e.getRenderTarget(),i.addEventListener("select",G),i.addEventListener("selectstart",G),i.addEventListener("selectend",G),i.addEventListener("squeeze",G),i.addEventListener("squeezestart",G),i.addEventListener("squeezeend",G),i.addEventListener("end",q),i.addEventListener("inputsourceschange",ae),m.xrCompatible!==!0&&await t.makeXRCompatible(),b=e.getPixelRatio(),e.getSize(A),i.renderState.layers===void 0){const D={antialias:m.antialias,alpha:!0,depth:m.depth,stencil:m.stencil,framebufferScaleFactor:r};f=new XRWebGLLayer(i,t,D),i.updateRenderState({baseLayer:f}),e.setPixelRatio(1),e.setSize(f.framebufferWidth,f.framebufferHeight,!1),y=new In(f.framebufferWidth,f.framebufferHeight,{format:un,type:li,colorSpace:e.outputColorSpace,stencilBuffer:m.stencil})}else{let D=null,R=null,T=null;m.depth&&(T=m.stencil?t.DEPTH24_STENCIL8:t.DEPTH_COMPONENT24,D=m.stencil?os:ts,R=m.stencil?rs:ss);const ie={colorFormat:t.RGBA8,depthFormat:T,scaleFactor:r};h=new XRWebGLBinding(i,t),d=h.createProjectionLayer(ie),i.updateRenderState({layers:[d]}),e.setPixelRatio(1),e.setSize(d.textureWidth,d.textureHeight,!1),y=new In(d.textureWidth,d.textureHeight,{format:un,type:li,depthTexture:new mu(d.textureWidth,d.textureHeight,R,void 0,void 0,void 0,void 0,void 0,void 0,D),stencilBuffer:m.stencil,colorSpace:e.outputColorSpa
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : stegu
// Lastmod : 20201014 (stegu)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
// https://github.com/stegu/webgl-noise
//
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x*34.0)+10.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
float snoise(vec3 v)
{
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.5 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 105.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}
// demo code:
// float color(vec2 xy) { return 0.7 * snoise(vec3(xy, 0.3*iTime)); }
// void mainImage(out vec4 fragColor, in vec2 fragCoord) {
// vec2 p = (fragCoord.xy/iResolution.y) * 2.0 - 1.0;
// vec3 xyz = vec3(p, 0);
// vec2 step = vec2(1.3, 1.7);
// float n = color(xyz.xy);
// n += 0.5 * color(xyz.xy * 2.0 - step);
// n += 0.25 * color(xyz.xy * 4.0 - 2.0 * step);
// n += 0.125 * color(xyz.xy * 8.0 - 3.0 * step);
// n += 0.0625 * color(xyz.xy * 16.0 - 4.0 * step);
// n += 0.03125 * color(xyz.xy * 32.0 - 5.0 * step);
// fragColor.xyz = vec3(0.5 + 0.5 * vec3(n, n, n));
// }
`,Bw=`
varying vec2 vUv;
void main() {
vec4 modelPosition = modelMatrix * vec4(position, 1.0);
vec4 viewPosition = viewMatrix * modelPosition;
gl_Position = projectionMatrix * viewPosition;
vUv = uv;
}
`,zw=Be({__name:"Background",props:{mask:{}},async setup(s){let e,t;const n=s,{renderer:i,sizes:r}=xw(),{paths:o}=([e,t]=qm(()=>pw(Sa,"/circuit-board.svg")),e=await e,t(),e),a=o.map(p=>Sa.createShapes(p)).reduce((p,y)=>[...p,...y]),l=ke(()=>Math.ceil(r.height.value/304)),c=ke(()=>Math.ceil(r.width.value/304)),u=Ge(new se(1/0,1/0));function h(p){const{x:y,y:_,height:x}=i.value.domElement.getBoundingClientRect();u.value=new se(p.x-y,x+_-p.y),g.value&&g.value.children.forEach(A=>{A.material.uniforms.uMouse.value=u.value})}function d(p){p.relatedTarget||(u.value=new se(1/0,1/0),g.value&&g.value.children.forEach(y=>{y.material.uniforms.uMouse.value=u.value}))}Nn(()=>{window.addEventListener("mousemove",h),window.addEventListener("mouseout",d)}),Wn(()=>{window.removeEventListener("mousemove",h),window.removeEventListener("mouseout",d)});const{onLoop:f}=KS();f(({elapsed:p})=>{g.value&&g.value.children.forEach(y=>{y.material.uniforms.uTime.value=p})});const g=Rn(null),v={uColor:ke(()=>n.mask==null?new N:new N(.23,.26,.32)),uTime:{value:0},uMouse:{value:new se(1/0,1/0)}},m=`
${kw}
precision mediump float;
uniform float uTime;
uniform vec2 uMouse;
uniform vec3 uColor;
varying vec2 vUv;
void main() {
float dist = distance(gl_FragCoord.xy, uMouse);
float alpha = max(0., 1. - dist / 304.);
alpha += max(0., snoise(vec3(gl_FragCoord.xy / 304., uTime / 4.)));
gl_FragColor = vec4(mix(uColor, vec3(0.), alpha), uColor == vec3(0.) ? alpha : 1.);
}
`;return(p,y)=>{const _=cn("TresShapeGeometry"),x=cn("TresShaderMaterial"),A=cn("TresMesh"),b=cn("TresGroup");return j(i)?(Y(),$e(b,{key:0,ref_key:"groupRef",ref:g,renderOrder:1},{default:ye(()=>[(Y(!0),fe(xt,null,Jt(l.value*c.value,E=>(Y(),$e(A,{position:[(E%c.value-c.value/2)*304,(Math.floor((E-1)/c.value)-l.value/2)*304,1]},{default:ye(()=>[Fe(_,{args:[j(a)]},null,8,["args"]),Fe(x,{vertexShader:Bw,fragmentShader:m,uniforms:v,blending:j(ga),stencilWrite:p.mask!=null,stencilRef:p.mask??0,stencilFunc:j(Zf),stencilFail:j(Bn),stencilZFail:j(Bn),stencilZPass:j(Bn)},null,8,["blending","stencilWrite","stencilRef","stencilFunc","stencilFail","stencilZFail","stencilZPass"])]),_:2},1032,["position"]))),256))]),_:1},512)):De("",!0)}}}),Vw=Be({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(s){return(e,t)=>(Y(),fe("span",{class:yt(["VPBadge",e.type])},[ue(e.$slots,"default",{},()=>[Ht(ft(e.text),1)])],2))}}),Hw={key:0,class:"VPBackdrop"},Gw=Be({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(s){return(e,t)=>(Y(),$e(Zc,{name:"fade"},{default:ye(()=>[e.show?(Y(),fe("div",Hw)):De("",!0)]),_:1}))}}),Ww=Ye(Gw,[["__scopeId","data-v-c79a1216"]]),ot=Ym;function $w(s,e){let t,n=!1;return()=>{t&&clearTimeout(t),n?t=setTimeout(s,e):(s(),(n=!0)&&setTimeout(()=>n=!1,e))}}function Wc(s){return/^\//.test(s)?s:`/${s}`}function Hu(s){const{pathname:e,search:t,hash:n,protocol:i}=new URL(s,"http://a.com");if(Zm(s)||s.startsWith("#")||!i.startsWith("http")||!Jm(e))return s;const{site:r}=ot(),o=e.endsWith("/")||e.endsWith(".html")?s:s.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,r.value.cleanUrls?"":".html")}${t}${n}`);return Jc(o)}function to({correspondingLink:s=!1}={}){const{site:e,localeIndex:t,page:n,theme:i,hash:r}=ot(),o=ke(()=>{var l,c;return{label:(l=e.value.locales[t.value])==null?void 0:l.label,link:((c=e.value.locales[t.value])==null?void 0:c.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:ke(()=>Object.entries(e.value.locales).flatMap(([l,c])=>o.value.label===c.label?[]:{text:c.label,link:Xw(c.link||(l==="root"?"/":`/${l}/`),i.value.i18nRouting!==!1&&s,n.value.relativePath.slice(o.value.link.length-1),!e.value.cleanUrls)+r.value})),currentLang:o}}function Xw(s,e,t,n){return e?s.replace(/\/$/,"")+Wc(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,n?".html":"")):s}const qw=s=>(Wt("data-v-d6be1790"),s=s(),$t(),s),Yw={class:"NotFound"},Zw={class:"code"},Jw={class:"title"},Kw=qw(()=>me("div",{class:"divider"},null,-1)),jw={class:"quote"},Qw={class:"action"},e1=["href","aria-label"],t1=Be({__name:"NotFound",setup(s){const{theme:e}=ot(),{currentLang:t}=to();return(n,i)=>{var r,o,a,l,c;return Y(),fe("div",Yw,[me("p",Zw,ft(((r=j(e).notFound)==null?void 0:r.code)??"404"),1),me("h1",Jw,ft(((o=j(e).notFound)==null?void 0:o.title)??"PAGE NOT FOUND"),1),Kw,me("blockquote",jw,ft(((a=j(e).notFound)==null?void 0:a.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),me("div",Qw,[me("a",{class:"link",href:j(Jc)(j(t).link),"aria-label":((l=j(e).notFound)==null?void 0:l.linkLabel)??"go to home"},ft(((c=j(e).notFound)==null?void 0:c.linkText)??"Take me home"),9,e1)])])}}}),n1=Ye(t1,[["__scopeId","data-v-d6be1790"]]);function Am(s,e){if(Array.isArray(s))return pa(s);if(s==null)return[];e=Wc(e);const t=Object.keys(s).sort((i,r)=>r.split("/").length-i.split("/").length).find(i=>e.startsWith(Wc(i))),n=t?s[t]:[];return Array.isArray(n)?pa(n):pa(n.items,n.base)}function i1(s){const e=[];let t=0;for(const n in s){const i=s[n];if(i.items){t=e.push(i);continue}e[t]||e.push({items:[]}),e[t].items.push(i)}return e}function s1(s){const e=[];function t(n){for(const i of n)i.text&&i.link&&e.push({text:i.text,link:i.link,docFooterText:i.docFooterText}),i.items&&t(i.items)}return t(s),e}function $c(s,e){return Array.isArray(e)?e.some(t=>$c(s,t)):is(s,e.link)?!0:e.items?$c(s,e.items):!1}function pa(s,e){return[...s].map(t=>{const n={...t},i=n.base||e;return i&&n.link&&(n.link=i+n.link),n.items&&(n.items=pa(n.items,i)),n})}function fi(){const{frontmatter:s,page:e,th