mirror of
https://github.com/Acamaeda/The-Modding-Tree.git
synced 2024-11-27 18:41:57 +00:00
2742 lines
No EOL
78 KiB
JavaScript
2742 lines
No EOL
78 KiB
JavaScript
(function (global, factory) {
|
|
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
|
|
typeof define === 'function' && define.amd ? define(factory) :
|
|
(global = global || self, global.Decimal = factory());
|
|
}(this, function () { 'use strict';
|
|
|
|
var padEnd = function (string, maxLength, fillString) {
|
|
|
|
if (string === null || maxLength === null) {
|
|
return string;
|
|
}
|
|
|
|
var result = String(string);
|
|
var targetLen = typeof maxLength === 'number'
|
|
? maxLength
|
|
: parseInt(maxLength, 10);
|
|
|
|
if (isNaN(targetLen) || !isFinite(targetLen)) {
|
|
return result;
|
|
}
|
|
|
|
|
|
var length = result.length;
|
|
if (length >= targetLen) {
|
|
return result;
|
|
}
|
|
|
|
|
|
var filled = fillString === null ? '' : String(fillString);
|
|
if (filled === '') {
|
|
filled = ' ';
|
|
}
|
|
|
|
|
|
var fillLen = targetLen - length;
|
|
|
|
while (filled.length < fillLen) {
|
|
filled += filled;
|
|
}
|
|
|
|
var truncated = filled.length > fillLen ? filled.substr(0, fillLen) : filled;
|
|
|
|
return result + truncated;
|
|
};
|
|
|
|
var MAX_SIGNIFICANT_DIGITS = 17; //Maximum number of digits of precision to assume in Number
|
|
|
|
var EXP_LIMIT = 9e15; //If we're ABOVE this value, increase a layer. (9e15 is close to the largest integer that can fit in a Number.)
|
|
|
|
var LAYER_DOWN = Math.log10(9e15); //If we're BELOW this value, drop down a layer. About 15.954.
|
|
|
|
var FIRST_NEG_LAYER = 1/9e15; //At layer 0, smaller non-zero numbers than this become layer 1 numbers with negative mag. After that the pattern continues as normal.
|
|
|
|
var NUMBER_EXP_MAX = 308; //The largest exponent that can appear in a Number, though not all mantissas are valid here.
|
|
|
|
var NUMBER_EXP_MIN = -324; //The smallest exponent that can appear in a Number, though not all mantissas are valid here.
|
|
|
|
var MAX_ES_IN_A_ROW = 5; //For default toString behaviour, when to swap from eee... to (e^n) syntax.
|
|
|
|
var powerOf10 = function () {
|
|
// We need this lookup table because Math.pow(10, exponent)
|
|
// when exponent's absolute value is large is slightly inaccurate.
|
|
// You can fix it with the power of math... or just make a lookup table.
|
|
// Faster AND simpler
|
|
var powersOf10 = [];
|
|
|
|
for (var i = NUMBER_EXP_MIN + 1; i <= NUMBER_EXP_MAX; i++) {
|
|
powersOf10.push(Number("1e" + i));
|
|
}
|
|
|
|
var indexOf0InPowersOf10 = 323;
|
|
return function (power) {
|
|
return powersOf10[power + indexOf0InPowersOf10];
|
|
};
|
|
}();
|
|
|
|
var D = function D(value) {
|
|
return Decimal.fromValue_noAlloc(value);
|
|
};
|
|
|
|
var FC = function FC(sign, layer, mag) {
|
|
return Decimal.fromComponents(sign, layer, mag);
|
|
};
|
|
|
|
var FC_NN = function FC_NN(sign, layer, mag) {
|
|
return Decimal.fromComponents_noNormalize(sign, layer, mag);
|
|
};
|
|
|
|
var ME = function ME(mantissa, exponent) {
|
|
return Decimal.fromMantissaExponent(mantissa, exponent);
|
|
};
|
|
|
|
var ME_NN = function ME_NN(mantissa, exponent) {
|
|
return Decimal.fromMantissaExponent_noNormalize(mantissa, exponent);
|
|
};
|
|
|
|
var decimalPlaces = function decimalPlaces(value, places) {
|
|
var len = places + 1;
|
|
var numDigits = Math.ceil(Math.log10(Math.abs(value)));
|
|
var rounded = Math.round(value * Math.pow(10, len - numDigits)) * Math.pow(10, numDigits - len);
|
|
return parseFloat(rounded.toFixed(Math.max(len - numDigits, 0)));
|
|
};
|
|
|
|
var f_maglog10 = function(n) {
|
|
return Math.sign(n)*Math.log10(Math.abs(n));
|
|
}
|
|
|
|
//from HyperCalc source code
|
|
var f_gamma = function(n) {
|
|
if (!isFinite(n)) { return n; }
|
|
if (n < -50)
|
|
{
|
|
if (n === Math.trunc(n)) { return Number.NEGATIVE_INFINITY; }
|
|
return 0;
|
|
}
|
|
|
|
var scal1 = 1;
|
|
while (n < 10)
|
|
{
|
|
scal1 = scal1*n;
|
|
++n;
|
|
}
|
|
|
|
n -= 1;
|
|
var l = 0.9189385332046727; //0.5*Math.log(2*Math.PI)
|
|
l = l + (n+0.5)*Math.log(n);
|
|
l = l - n;
|
|
var n2 = n*n;
|
|
var np = n;
|
|
l = l+1/(12*np);
|
|
np = np*n2;
|
|
l = l+1/(360*np);
|
|
np = np*n2;
|
|
l = l+1/(1260*np);
|
|
np = np*n2;
|
|
l = l+1/(1680*np);
|
|
np = np*n2;
|
|
l = l+1/(1188*np);
|
|
np = np*n2;
|
|
l = l+691/(360360*np);
|
|
np = np*n2;
|
|
l = l+7/(1092*np);
|
|
np = np*n2;
|
|
l = l+3617/(122400*np);
|
|
|
|
return Math.exp(l)/scal1;
|
|
};
|
|
|
|
var twopi = 6.2831853071795864769252842; // 2*pi
|
|
var EXPN1 = 0.36787944117144232159553; // exp(-1)
|
|
var OMEGA = 0.56714329040978387299997; // W(1, 0)
|
|
//from https://math.stackexchange.com/a/465183
|
|
// The evaluation can become inaccurate very close to the branch point
|
|
var f_lambertw = function(z, tol = 1e-10) {
|
|
var w;
|
|
var wn;
|
|
|
|
if (!Number.isFinite(z)) { return z; }
|
|
if (z === 0)
|
|
{
|
|
return z;
|
|
}
|
|
if (z === 1)
|
|
{
|
|
return OMEGA;
|
|
}
|
|
|
|
if (z < 10)
|
|
{
|
|
w = 0;
|
|
}
|
|
else
|
|
{
|
|
w = Math.log(z)-Math.log(Math.log(z));
|
|
}
|
|
|
|
for (var i = 0; i < 100; ++i)
|
|
{
|
|
wn = (z * Math.exp(-w) + w * w)/(w + 1);
|
|
if (Math.abs(wn - w) < tol*Math.abs(wn))
|
|
{
|
|
return wn;
|
|
}
|
|
else
|
|
{
|
|
w = wn;
|
|
}
|
|
}
|
|
|
|
throw Error("Iteration failed to converge: " + z);
|
|
//return Number.NaN;
|
|
}
|
|
|
|
var Decimal =
|
|
/** @class */
|
|
function () {
|
|
|
|
function Decimal(value) {
|
|
|
|
this.sign = Number.NaN;
|
|
this.layer = Number.NaN;
|
|
this.mag = Number.NaN;
|
|
|
|
if (value instanceof Decimal) {
|
|
this.fromDecimal(value);
|
|
} else if (typeof value === "number") {
|
|
this.fromNumber(value);
|
|
} else if (typeof value === "string") {
|
|
this.fromString(value);
|
|
} else {
|
|
this.sign = 0;
|
|
this.layer = 0;
|
|
this.mag = 0;
|
|
}
|
|
}
|
|
|
|
Object.defineProperty(Decimal.prototype, "m", {
|
|
get: function get() {
|
|
if (this.sign === 0)
|
|
{
|
|
return 0;
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
var exp = Math.floor(Math.log10(this.mag));
|
|
//handle special case 5e-324
|
|
var man;
|
|
if (this.mag === 5e-324)
|
|
{
|
|
man = 5;
|
|
}
|
|
else
|
|
{
|
|
man = this.mag / powerOf10(exp);
|
|
}
|
|
return this.sign*man;
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
var residue = this.mag-Math.floor(this.mag);
|
|
return this.sign*Math.pow(10, residue);
|
|
}
|
|
else
|
|
{
|
|
//mantissa stops being relevant past 1e9e15 / ee15.954
|
|
return this.sign;
|
|
}
|
|
},
|
|
set: function set(value) {
|
|
if (this.layer <= 2)
|
|
{
|
|
this.fromMantissaExponent(value, this.e);
|
|
}
|
|
else
|
|
{
|
|
//don't even pretend mantissa is meaningful
|
|
this.sign = Math.sign(value);
|
|
if (this.sign === 0) { this.layer === 0; this.exponent === 0; }
|
|
}
|
|
},
|
|
enumerable: true,
|
|
configurable: true
|
|
});
|
|
Object.defineProperty(Decimal.prototype, "e", {
|
|
get: function get() {
|
|
if (this.sign === 0)
|
|
{
|
|
return 0;
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
return Math.floor(Math.log10(this.mag));
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return Math.floor(this.mag);
|
|
}
|
|
else if (this.layer === 2)
|
|
{
|
|
return Math.floor(Math.sign(this.mag)*Math.pow(10, Math.abs(this.mag)));
|
|
}
|
|
else
|
|
{
|
|
return this.mag*Number.POSITIVE_INFINITY;
|
|
}
|
|
},
|
|
set: function set(value) {
|
|
this.fromMantissaExponent(this.m, value);
|
|
},
|
|
enumerable: true,
|
|
configurable: true
|
|
});
|
|
Object.defineProperty(Decimal.prototype, "s", {
|
|
get: function get() {
|
|
return this.sign;
|
|
},
|
|
set: function set(value) {
|
|
if (value === 0) {
|
|
this.sign = 0;
|
|
this.layer = 0;
|
|
this.mag = 0;
|
|
}
|
|
else
|
|
{
|
|
this.sign = value;
|
|
}
|
|
},
|
|
enumerable: true,
|
|
configurable: true
|
|
});
|
|
|
|
Object.defineProperty(Decimal.prototype, "mantissa", {
|
|
get: function get() {
|
|
return this.m;
|
|
},
|
|
set: function set(value) {
|
|
this.m = value;
|
|
},
|
|
enumerable: true,
|
|
configurable: true
|
|
});
|
|
|
|
Object.defineProperty(Decimal.prototype, "exponent", {
|
|
get: function get() {
|
|
return this.e;
|
|
},
|
|
set: function set(value) {
|
|
this.e = value;
|
|
},
|
|
enumerable: true,
|
|
configurable: true
|
|
});
|
|
|
|
Decimal.fromComponents = function (sign, layer, mag) {
|
|
return new Decimal().fromComponents(sign, layer, mag);
|
|
};
|
|
|
|
Decimal.fromComponents_noNormalize = function (sign, layer, mag) {
|
|
return new Decimal().fromComponents_noNormalize(sign, layer, mag);
|
|
};
|
|
|
|
Decimal.fromMantissaExponent = function (mantissa, exponent) {
|
|
return new Decimal().fromMantissaExponent(mantissa, exponent);
|
|
};
|
|
|
|
Decimal.fromMantissaExponent_noNormalize = function (mantissa, exponent) {
|
|
return new Decimal().fromMantissaExponent_noNormalize(mantissa, exponent);
|
|
};
|
|
|
|
Decimal.fromDecimal = function (value) {
|
|
return new Decimal().fromDecimal(value);
|
|
};
|
|
|
|
Decimal.fromNumber = function (value) {
|
|
return new Decimal().fromNumber(value);
|
|
};
|
|
|
|
Decimal.fromString = function (value) {
|
|
return new Decimal().fromString(value);
|
|
};
|
|
|
|
Decimal.fromValue = function (value) {
|
|
return new Decimal().fromValue(value);
|
|
};
|
|
|
|
Decimal.fromValue_noAlloc = function (value) {
|
|
return value instanceof Decimal ? value : new Decimal(value);
|
|
};
|
|
|
|
Decimal.abs = function (value) {
|
|
return D(value).abs();
|
|
};
|
|
|
|
Decimal.neg = function (value) {
|
|
return D(value).neg();
|
|
};
|
|
|
|
Decimal.negate = function (value) {
|
|
return D(value).neg();
|
|
};
|
|
|
|
Decimal.negated = function (value) {
|
|
return D(value).neg();
|
|
};
|
|
|
|
Decimal.sign = function (value) {
|
|
return D(value).sign();
|
|
};
|
|
|
|
Decimal.sgn = function (value) {
|
|
return D(value).sign();
|
|
};
|
|
|
|
Decimal.round = function (value) {
|
|
return D(value).round();
|
|
};
|
|
|
|
Decimal.floor = function (value) {
|
|
return D(value).floor();
|
|
};
|
|
|
|
Decimal.ceil = function (value) {
|
|
return D(value).ceil();
|
|
};
|
|
|
|
Decimal.trunc = function (value) {
|
|
return D(value).trunc();
|
|
};
|
|
|
|
Decimal.add = function (value, other) {
|
|
return D(value).add(other);
|
|
};
|
|
|
|
Decimal.plus = function (value, other) {
|
|
return D(value).add(other);
|
|
};
|
|
|
|
Decimal.sub = function (value, other) {
|
|
return D(value).sub(other);
|
|
};
|
|
|
|
Decimal.subtract = function (value, other) {
|
|
return D(value).sub(other);
|
|
};
|
|
|
|
Decimal.minus = function (value, other) {
|
|
return D(value).sub(other);
|
|
};
|
|
|
|
Decimal.mul = function (value, other) {
|
|
return D(value).mul(other);
|
|
};
|
|
|
|
Decimal.multiply = function (value, other) {
|
|
return D(value).mul(other);
|
|
};
|
|
|
|
Decimal.times = function (value, other) {
|
|
return D(value).mul(other);
|
|
};
|
|
|
|
Decimal.div = function (value, other) {
|
|
return D(value).div(other);
|
|
};
|
|
|
|
Decimal.divide = function (value, other) {
|
|
return D(value).div(other);
|
|
};
|
|
|
|
Decimal.recip = function (value) {
|
|
return D(value).recip();
|
|
};
|
|
|
|
Decimal.reciprocal = function (value) {
|
|
return D(value).recip();
|
|
};
|
|
|
|
Decimal.reciprocate = function (value) {
|
|
return D(value).reciprocate();
|
|
};
|
|
|
|
Decimal.cmp = function (value, other) {
|
|
return D(value).cmp(other);
|
|
};
|
|
|
|
Decimal.cmpabs = function (value, other) {
|
|
return D(value).cmpabs(other);
|
|
};
|
|
|
|
Decimal.compare = function (value, other) {
|
|
return D(value).cmp(other);
|
|
};
|
|
|
|
Decimal.eq = function (value, other) {
|
|
return D(value).eq(other);
|
|
};
|
|
|
|
Decimal.equals = function (value, other) {
|
|
return D(value).eq(other);
|
|
};
|
|
|
|
Decimal.neq = function (value, other) {
|
|
return D(value).neq(other);
|
|
};
|
|
|
|
Decimal.notEquals = function (value, other) {
|
|
return D(value).notEquals(other);
|
|
};
|
|
|
|
Decimal.lt = function (value, other) {
|
|
return D(value).lt(other);
|
|
};
|
|
|
|
Decimal.lte = function (value, other) {
|
|
return D(value).lte(other);
|
|
};
|
|
|
|
Decimal.gt = function (value, other) {
|
|
return D(value).gt(other);
|
|
};
|
|
|
|
Decimal.gte = function (value, other) {
|
|
return D(value).gte(other);
|
|
};
|
|
|
|
Decimal.max = function (value, other) {
|
|
return D(value).max(other);
|
|
};
|
|
|
|
Decimal.min = function (value, other) {
|
|
return D(value).min(other);
|
|
};
|
|
|
|
Decimal.minabs = function (value, other) {
|
|
return D(value).minabs(other);
|
|
};
|
|
|
|
Decimal.maxabs = function (value, other) {
|
|
return D(value).maxabs(other);
|
|
};
|
|
|
|
Decimal.clamp = function(value, min, max) {
|
|
return D(value).clamp(min, max);
|
|
}
|
|
|
|
Decimal.clampMin = function(value, min) {
|
|
return D(value).clampMin(min);
|
|
}
|
|
|
|
Decimal.clampMax = function(value, max) {
|
|
return D(value).clampMax(max);
|
|
}
|
|
|
|
Decimal.cmp_tolerance = function (value, other, tolerance) {
|
|
return D(value).cmp_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.compare_tolerance = function (value, other, tolerance) {
|
|
return D(value).cmp_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.eq_tolerance = function (value, other, tolerance) {
|
|
return D(value).eq_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.equals_tolerance = function (value, other, tolerance) {
|
|
return D(value).eq_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.neq_tolerance = function (value, other, tolerance) {
|
|
return D(value).neq_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.notEquals_tolerance = function (value, other, tolerance) {
|
|
return D(value).notEquals_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.lt_tolerance = function (value, other, tolerance) {
|
|
return D(value).lt_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.lte_tolerance = function (value, other, tolerance) {
|
|
return D(value).lte_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.gt_tolerance = function (value, other, tolerance) {
|
|
return D(value).gt_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.gte_tolerance = function (value, other, tolerance) {
|
|
return D(value).gte_tolerance(other, tolerance);
|
|
};
|
|
|
|
Decimal.pLog10 = function (value) {
|
|
return D(value).pLog10();
|
|
};
|
|
|
|
Decimal.absLog10 = function (value) {
|
|
return D(value).absLog10();
|
|
};
|
|
|
|
Decimal.log10 = function (value) {
|
|
return D(value).log10();
|
|
};
|
|
|
|
Decimal.log = function (value, base) {
|
|
return D(value).log(base);
|
|
};
|
|
|
|
Decimal.log2 = function (value) {
|
|
return D(value).log2();
|
|
};
|
|
|
|
Decimal.ln = function (value) {
|
|
return D(value).ln();
|
|
};
|
|
|
|
Decimal.logarithm = function (value, base) {
|
|
return D(value).logarithm(base);
|
|
};
|
|
|
|
Decimal.pow = function (value, other) {
|
|
return D(value).pow(other);
|
|
};
|
|
|
|
Decimal.pow10 = function (value) {
|
|
return D(value).pow10();
|
|
};
|
|
|
|
Decimal.root = function (value, other) {
|
|
return D(value).root(other);
|
|
};
|
|
|
|
Decimal.factorial = function (value, other) {
|
|
return D(value).factorial();
|
|
};
|
|
|
|
Decimal.gamma = function (value, other) {
|
|
return D(value).gamma();
|
|
};
|
|
|
|
Decimal.lngamma = function (value, other) {
|
|
return D(value).lngamma();
|
|
};
|
|
|
|
Decimal.exp = function (value) {
|
|
return D(value).exp();
|
|
};
|
|
|
|
Decimal.sqr = function (value) {
|
|
return D(value).sqr();
|
|
};
|
|
|
|
Decimal.sqrt = function (value) {
|
|
return D(value).sqrt();
|
|
};
|
|
|
|
Decimal.cube = function (value) {
|
|
return D(value).cube();
|
|
};
|
|
|
|
Decimal.cbrt = function (value) {
|
|
return D(value).cbrt();
|
|
};
|
|
|
|
Decimal.tetrate = function (value, height = 2, payload = FC_NN(1, 0, 1)) {
|
|
return D(value).tetrate(height, payload);
|
|
}
|
|
|
|
Decimal.iteratedexp = function (value, height = 2, payload = FC_NN(1, 0, 1)) {
|
|
return D(value).iteratedexp(height, payload);
|
|
}
|
|
|
|
Decimal.iteratedlog = function (value, base = 10, times = 1) {
|
|
return D(value).iteratedlog(base, times);
|
|
}
|
|
|
|
Decimal.layeradd10 = function (value, diff) {
|
|
return D(value).layeradd10(diff);
|
|
}
|
|
|
|
Decimal.layeradd = function (value, diff, base = 10) {
|
|
return D(value).layeradd(diff, base);
|
|
}
|
|
|
|
Decimal.slog = function (value, base = 10) {
|
|
return D(value).slog(base);
|
|
}
|
|
|
|
Decimal.lambertw = function(value) {
|
|
return D(value).lambertw();
|
|
}
|
|
|
|
Decimal.ssqrt = function(value) {
|
|
return D(value).ssqrt();
|
|
}
|
|
|
|
Decimal.pentate = function (value, height = 2, payload = FC_NN(1, 0, 1)) {
|
|
return D(value).pentate(height, payload);
|
|
}
|
|
|
|
/**
|
|
* If you're willing to spend 'resourcesAvailable' and want to buy something
|
|
* with exponentially increasing cost each purchase (start at priceStart,
|
|
* multiply by priceRatio, already own currentOwned), how much of it can you buy?
|
|
* Adapted from Trimps source code.
|
|
*/
|
|
|
|
|
|
Decimal.affordGeometricSeries = function (resourcesAvailable, priceStart, priceRatio, currentOwned) {
|
|
return this.affordGeometricSeries_core(D(resourcesAvailable), D(priceStart), D(priceRatio), currentOwned);
|
|
};
|
|
/**
|
|
* How much resource would it cost to buy (numItems) items if you already have currentOwned,
|
|
* the initial price is priceStart and it multiplies by priceRatio each purchase?
|
|
*/
|
|
|
|
|
|
Decimal.sumGeometricSeries = function (numItems, priceStart, priceRatio, currentOwned) {
|
|
return this.sumGeometricSeries_core(numItems, D(priceStart), D(priceRatio), currentOwned);
|
|
};
|
|
/**
|
|
* If you're willing to spend 'resourcesAvailable' and want to buy something with additively
|
|
* increasing cost each purchase (start at priceStart, add by priceAdd, already own currentOwned),
|
|
* how much of it can you buy?
|
|
*/
|
|
|
|
|
|
Decimal.affordArithmeticSeries = function (resourcesAvailable, priceStart, priceAdd, currentOwned) {
|
|
return this.affordArithmeticSeries_core(D(resourcesAvailable), D(priceStart), D(priceAdd), D(currentOwned));
|
|
};
|
|
/**
|
|
* How much resource would it cost to buy (numItems) items if you already have currentOwned,
|
|
* the initial price is priceStart and it adds priceAdd each purchase?
|
|
* Adapted from http://www.mathwords.com/a/arithmetic_series.htm
|
|
*/
|
|
|
|
|
|
Decimal.sumArithmeticSeries = function (numItems, priceStart, priceAdd, currentOwned) {
|
|
return this.sumArithmeticSeries_core(D(numItems), D(priceStart), D(priceAdd), D(currentOwned));
|
|
};
|
|
/**
|
|
* When comparing two purchases that cost (resource) and increase your resource/sec by (deltaRpS),
|
|
* the lowest efficiency score is the better one to purchase.
|
|
* From Frozen Cookies:
|
|
* http://cookieclicker.wikia.com/wiki/Frozen_Cookies_(JavaScript_Add-on)#Efficiency.3F_What.27s_that.3F
|
|
*/
|
|
|
|
|
|
Decimal.efficiencyOfPurchase = function (cost, currentRpS, deltaRpS) {
|
|
return this.efficiencyOfPurchase_core(D(cost), D(currentRpS), D(deltaRpS));
|
|
};
|
|
|
|
Decimal.randomDecimalForTesting = function (maxLayers) {
|
|
// NOTE: This doesn't follow any kind of sane random distribution, so use this for testing purposes only.
|
|
//5% of the time, return 0
|
|
if (Math.random() * 20 < 1) {
|
|
return FC_NN(0, 0, 0);
|
|
}
|
|
|
|
var randomsign = Math.random() > 0.5 ? 1 : -1;
|
|
|
|
//5% of the time, return 1 or -1
|
|
if (Math.random() * 20 < 1) {
|
|
return FC_NN(randomsign, 0, 1);
|
|
}
|
|
|
|
//pick a random layer
|
|
var layer = Math.floor(Math.random()*(maxLayers+1));
|
|
|
|
var randomexp = layer === 0 ? Math.random()*616-308 : Math.random()*16;
|
|
//10% of the time, make it a simple power of 10
|
|
if (Math.random() > 0.9) { randomexp = Math.trunc(randomexp); }
|
|
var randommag = Math.pow(10, randomexp);
|
|
//10% of the time, trunc mag
|
|
if (Math.random() > 0.9) { randommag = Math.trunc(randommag); }
|
|
return FC(randomsign, layer, randommag);
|
|
};
|
|
|
|
Decimal.affordGeometricSeries_core = function (resourcesAvailable, priceStart, priceRatio, currentOwned) {
|
|
var actualStart = priceStart.mul(priceRatio.pow(currentOwned));
|
|
return Decimal.floor(resourcesAvailable.div(actualStart).mul(priceRatio.sub(1)).add(1).log10().div(priceRatio.log10()));
|
|
};
|
|
|
|
Decimal.sumGeometricSeries_core = function (numItems, priceStart, priceRatio, currentOwned) {
|
|
return priceStart.mul(priceRatio.pow(currentOwned)).mul(Decimal.sub(1, priceRatio.pow(numItems))).div(Decimal.sub(1, priceRatio));
|
|
};
|
|
|
|
Decimal.affordArithmeticSeries_core = function (resourcesAvailable, priceStart, priceAdd, currentOwned) {
|
|
// n = (-(a-d/2) + sqrt((a-d/2)^2+2dS))/d
|
|
// where a is actualStart, d is priceAdd and S is resourcesAvailable
|
|
// then floor it and you're done!
|
|
var actualStart = priceStart.add(currentOwned.mul(priceAdd));
|
|
var b = actualStart.sub(priceAdd.div(2));
|
|
var b2 = b.pow(2);
|
|
return b.neg().add(b2.add(priceAdd.mul(resourcesAvailable).mul(2)).sqrt()).div(priceAdd).floor();
|
|
};
|
|
|
|
Decimal.sumArithmeticSeries_core = function (numItems, priceStart, priceAdd, currentOwned) {
|
|
var actualStart = priceStart.add(currentOwned.mul(priceAdd)); // (n/2)*(2*a+(n-1)*d)
|
|
|
|
return numItems.div(2).mul(actualStart.mul(2).plus(numItems.sub(1).mul(priceAdd)));
|
|
};
|
|
|
|
Decimal.efficiencyOfPurchase_core = function (cost, currentRpS, deltaRpS) {
|
|
return cost.div(currentRpS).add(cost.div(deltaRpS));
|
|
};
|
|
|
|
Decimal.prototype.normalize = function () {
|
|
/*
|
|
PSEUDOCODE:
|
|
Whenever we are partially 0 (sign is 0 or mag and layer is 0), make it fully 0.
|
|
Whenever we are at or hit layer 0, extract sign from negative mag.
|
|
If layer === 0 and mag < FIRST_NEG_LAYER (1/9e15), shift to 'first negative layer' (add layer, log10 mag).
|
|
While abs(mag) > EXP_LIMIT (9e15), layer += 1, mag = maglog10(mag).
|
|
While abs(mag) < LAYER_DOWN (15.954) and layer > 0, layer -= 1, mag = pow(10, mag).
|
|
|
|
When we're done, all of the following should be true OR one of the numbers is not IsFinite OR layer is not IsInteger (error state):
|
|
Any 0 is totally zero (0, 0, 0).
|
|
Anything layer 0 has mag 0 OR mag > 1/9e15 and < 9e15.
|
|
Anything layer 1 or higher has abs(mag) >= 15.954 and < 9e15.
|
|
We will assume in calculations that all Decimals are either erroneous or satisfy these criteria. (Otherwise: Garbage in, garbage out.)
|
|
*/
|
|
if (this.sign === 0 || (this.mag === 0 && this.layer === 0))
|
|
{
|
|
this.sign = 0;
|
|
this.mag = 0;
|
|
this.layer = 0;
|
|
return this;
|
|
}
|
|
|
|
if (this.layer === 0 && this.mag < 0)
|
|
{
|
|
//extract sign from negative mag at layer 0
|
|
this.mag = -this.mag;
|
|
this.sign = -this.sign;
|
|
}
|
|
|
|
//Handle shifting from layer 0 to negative layers.
|
|
if (this.layer === 0 && this.mag < FIRST_NEG_LAYER)
|
|
{
|
|
this.layer += 1;
|
|
this.mag = Math.log10(this.mag);
|
|
return this;
|
|
}
|
|
|
|
var absmag = Math.abs(this.mag);
|
|
var signmag = Math.sign(this.mag);
|
|
|
|
if (absmag >= EXP_LIMIT)
|
|
{
|
|
this.layer += 1;
|
|
this.mag = signmag*Math.log10(absmag);
|
|
return this;
|
|
}
|
|
else
|
|
{
|
|
while (absmag < LAYER_DOWN && this.layer > 0)
|
|
{
|
|
this.layer -= 1;
|
|
if (this.layer === 0)
|
|
{
|
|
this.mag = Math.pow(10, this.mag);
|
|
}
|
|
else
|
|
{
|
|
this.mag = signmag*Math.pow(10, absmag);
|
|
absmag = Math.abs(this.mag);
|
|
signmag = Math.sign(this.mag);
|
|
}
|
|
}
|
|
if (this.layer === 0)
|
|
{
|
|
if (this.mag < 0)
|
|
{
|
|
//extract sign from negative mag at layer 0
|
|
this.mag = -this.mag;
|
|
this.sign = -this.sign;
|
|
}
|
|
else if (this.mag === 0)
|
|
{
|
|
//excessive rounding can give us all zeroes
|
|
this.sign = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.fromComponents = function (sign, layer, mag) {
|
|
this.sign = sign;
|
|
this.layer = layer;
|
|
this.mag = mag;
|
|
|
|
this.normalize();
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.fromComponents_noNormalize = function (sign, layer, mag) {
|
|
this.sign = sign;
|
|
this.layer = layer;
|
|
this.mag = mag;
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.fromMantissaExponent = function (mantissa, exponent) {
|
|
this.layer = 1;
|
|
this.sign = Math.sign(mantissa);
|
|
mantissa = Math.abs(mantissa);
|
|
this.mag = exponent + Math.log10(mantissa);
|
|
|
|
this.normalize();
|
|
return this;
|
|
};
|
|
|
|
|
|
Decimal.prototype.fromMantissaExponent_noNormalize = function (mantissa, exponent) {
|
|
//The idea of 'normalizing' a break_infinity.js style Decimal doesn't really apply. So just do the same thing.
|
|
this.fromMantissaExponent(mantissa, exponent);
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.fromDecimal = function (value) {
|
|
this.sign = value.sign;
|
|
this.layer = value.layer;
|
|
this.mag = value.mag;
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.fromNumber = function (value) {
|
|
this.mag = Math.abs(value);
|
|
this.sign = Math.sign(value);
|
|
this.layer = 0;
|
|
this.normalize();
|
|
return this;
|
|
};
|
|
|
|
var IGNORE_COMMAS = true;
|
|
var COMMAS_ARE_DECIMAL_POINTS = false;
|
|
|
|
Decimal.prototype.fromString = function (value) {
|
|
if (IGNORE_COMMAS) { value = value.replace(",", ""); }
|
|
else if (COMMAS_ARE_DECIMAL_POINTS) { value = value.replace(",", "."); }
|
|
|
|
//Handle x^^^y format.
|
|
var pentationparts = value.split("^^^");
|
|
if (pentationparts.length === 2)
|
|
{
|
|
var base = parseFloat(pentationparts[0]);
|
|
var height = parseFloat(pentationparts[1]);
|
|
var payload = 1;
|
|
var heightparts = pentationparts[1].split(";");
|
|
if (heightparts.length === 2)
|
|
{
|
|
var payload = parseFloat(heightparts[1]);
|
|
if (!isFinite(payload)) { payload = 1; }
|
|
}
|
|
if (isFinite(base) && isFinite(height))
|
|
{
|
|
var result = Decimal.pentate(base, height, payload);
|
|
this.sign = result.sign;
|
|
this.layer = result.layer;
|
|
this.mag = result.mag;
|
|
return this;
|
|
}
|
|
}
|
|
|
|
//Handle x^^y format.
|
|
var tetrationparts = value.split("^^");
|
|
if (tetrationparts.length === 2)
|
|
{
|
|
var base = parseFloat(tetrationparts[0]);
|
|
var height = parseFloat(tetrationparts[1]);
|
|
var heightparts = tetrationparts[1].split(";");
|
|
if (heightparts.length === 2)
|
|
{
|
|
var payload = parseFloat(heightparts[1]);
|
|
if (!isFinite(payload)) { payload = 1; }
|
|
}
|
|
if (isFinite(base) && isFinite(height))
|
|
{
|
|
var result = Decimal.tetrate(base, height, payload);
|
|
this.sign = result.sign;
|
|
this.layer = result.layer;
|
|
this.mag = result.mag;
|
|
return this;
|
|
}
|
|
}
|
|
|
|
//Handle x^y format.
|
|
var powparts = value.split("^");
|
|
if (powparts.length === 2)
|
|
{
|
|
var base = parseFloat(powparts[0]);
|
|
var exponent = parseFloat(powparts[1]);
|
|
if (isFinite(base) && isFinite(exponent))
|
|
{
|
|
var result = Decimal.pow(base, exponent);
|
|
this.sign = result.sign;
|
|
this.layer = result.layer;
|
|
this.mag = result.mag;
|
|
return this;
|
|
}
|
|
}
|
|
|
|
//Handle various cases involving it being a Big Number.
|
|
value = value.trim().toLowerCase();
|
|
|
|
//handle X PT Y format.
|
|
var ptparts = value.split("pt");
|
|
if (ptparts.length === 2)
|
|
{
|
|
base = 10;
|
|
height = parseFloat(ptparts[0]);
|
|
ptparts[1] = ptparts[1].replace("(", "");
|
|
ptparts[1] = ptparts[1].replace(")", "");
|
|
var payload = parseFloat(ptparts[1]);
|
|
if (!isFinite(payload)) { payload = 1; }
|
|
if (isFinite(base) && isFinite(height))
|
|
{
|
|
var result = Decimal.tetrate(base, height, payload);
|
|
this.sign = result.sign;
|
|
this.layer = result.layer;
|
|
this.mag = result.mag;
|
|
return this;
|
|
}
|
|
}
|
|
|
|
//handle XpY format (it's the same thing just with p).
|
|
var ptparts = value.split("p");
|
|
if (ptparts.length === 2)
|
|
{
|
|
base = 10;
|
|
height = parseFloat(ptparts[0]);
|
|
ptparts[1] = ptparts[1].replace("(", "");
|
|
ptparts[1] = ptparts[1].replace(")", "");
|
|
var payload = parseFloat(ptparts[1]);
|
|
if (!isFinite(payload)) { payload = 1; }
|
|
if (isFinite(base) && isFinite(height))
|
|
{
|
|
var result = Decimal.tetrate(base, height, payload);
|
|
this.sign = result.sign;
|
|
this.layer = result.layer;
|
|
this.mag = result.mag;
|
|
return this;
|
|
}
|
|
}
|
|
|
|
var parts = value.split("e");
|
|
var ecount = parts.length-1;
|
|
|
|
//Handle numbers that are exactly floats (0 or 1 es).
|
|
if (ecount === 0)
|
|
{
|
|
var numberAttempt = parseFloat(value);
|
|
if (isFinite(numberAttempt))
|
|
{
|
|
return this.fromNumber(numberAttempt);
|
|
}
|
|
}
|
|
else if (ecount === 1)
|
|
{
|
|
//Very small numbers ("2e-3000" and so on) may look like valid floats but round to 0.
|
|
var numberAttempt = parseFloat(value);
|
|
if (isFinite(numberAttempt) && numberAttempt !== 0)
|
|
{
|
|
return this.fromNumber(numberAttempt);
|
|
}
|
|
}
|
|
|
|
//Handle new (e^N)X format.
|
|
var newparts = value.split("e^");
|
|
if (newparts.length === 2)
|
|
{
|
|
this.sign = 1;
|
|
if (newparts[0].charAt(0) == "-")
|
|
{
|
|
this.sign = -1;
|
|
}
|
|
var layerstring = "";
|
|
for (var i = 0; i < newparts[1].length; ++i)
|
|
{
|
|
var chrcode = newparts[1].charCodeAt(i);
|
|
if ((chrcode >= 43 && chrcode <= 57) || chrcode === 101) //is "0" to "9" or "+" or "-" or "." or "e" (or "," or "/")
|
|
{
|
|
layerstring += newparts[1].charAt(i);
|
|
}
|
|
else //we found the end of the layer count
|
|
{
|
|
this.layer = parseFloat(layerstring);
|
|
this.mag = parseFloat(newparts[1].substr(i+1));
|
|
this.normalize();
|
|
return this;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ecount < 1) { this.sign = 0; this.layer = 0; this.mag = 0; return this; }
|
|
var mantissa = parseFloat(parts[0]);
|
|
if (mantissa === 0) { this.sign = 0; this.layer = 0; this.mag = 0; return this; }
|
|
var exponent = parseFloat(parts[parts.length-1]);
|
|
//handle numbers like AeBeC and AeeeeBeC
|
|
if (ecount >= 2)
|
|
{
|
|
var me = parseFloat(parts[parts.length-2]);
|
|
if (isFinite(me))
|
|
{
|
|
exponent *= Math.sign(me);
|
|
exponent += f_maglog10(me);
|
|
}
|
|
}
|
|
|
|
//Handle numbers written like eee... (N es) X
|
|
if (!isFinite(mantissa))
|
|
{
|
|
this.sign = (parts[0] === "-") ? -1 : 1;
|
|
this.layer = ecount;
|
|
this.mag = exponent;
|
|
}
|
|
//Handle numbers written like XeY
|
|
else if (ecount === 1)
|
|
{
|
|
this.sign = Math.sign(mantissa);
|
|
this.layer = 1;
|
|
//Example: 2e10 is equal to 10^log10(2e10) which is equal to 10^(10+log10(2))
|
|
this.mag = exponent + Math.log10(Math.abs(mantissa));
|
|
}
|
|
//Handle numbers written like Xeee... (N es) Y
|
|
else
|
|
{
|
|
this.sign = Math.sign(mantissa);
|
|
this.layer = ecount;
|
|
if (ecount === 2)
|
|
{
|
|
var result = Decimal.mul(FC(1, 2, exponent), D(mantissa));
|
|
this.sign = result.sign;
|
|
this.layer = result.layer;
|
|
this.mag = result.mag;
|
|
return this;
|
|
}
|
|
else
|
|
{
|
|
//at eee and above, mantissa is too small to be recognizable!
|
|
this.mag = exponent;
|
|
}
|
|
}
|
|
|
|
this.normalize();
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.fromValue = function (value) {
|
|
if (value instanceof Decimal) {
|
|
return this.fromDecimal(value);
|
|
}
|
|
|
|
if (typeof value === "number") {
|
|
return this.fromNumber(value);
|
|
}
|
|
|
|
if (typeof value === "string") {
|
|
return this.fromString(value);
|
|
}
|
|
|
|
this.sign = 0;
|
|
this.layer = 0;
|
|
this.mag = 0;
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.toNumber = function () {
|
|
if (!Number.isFinite(this.layer)) { return Number.NaN; }
|
|
if (this.layer === 0)
|
|
{
|
|
return this.sign*this.mag;
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return this.sign*Math.pow(10, this.mag);
|
|
}
|
|
else //overflow for any normalized Decimal
|
|
{
|
|
return this.mag > 0 ? (this.sign > 0 ? Number.POSITIVE_INFINITY : Number.NEGATIVE_INFINITY) : 0;
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.mantissaWithDecimalPlaces = function (places) {
|
|
// https://stackoverflow.com/a/37425022
|
|
if (isNaN(this.m)) {
|
|
return Number.NaN;
|
|
}
|
|
|
|
if (this.m === 0) {
|
|
return 0;
|
|
}
|
|
|
|
return decimalPlaces(this.m, places);
|
|
};
|
|
|
|
Decimal.prototype.magnitudeWithDecimalPlaces = function (places) {
|
|
// https://stackoverflow.com/a/37425022
|
|
if (isNaN(this.mag)) {
|
|
return Number.NaN;
|
|
}
|
|
|
|
if (this.mag === 0) {
|
|
return 0;
|
|
}
|
|
|
|
return decimalPlaces(this.mag, places);
|
|
};
|
|
|
|
Decimal.prototype.toString = function () {
|
|
if (this.layer === 0)
|
|
{
|
|
if ((this.mag < 1e21 && this.mag > 1e-7) || this.mag === 0)
|
|
{
|
|
return (this.sign*this.mag).toString();
|
|
}
|
|
return this.m + "e" + this.e;
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return this.m + "e" + this.e;
|
|
}
|
|
else
|
|
{
|
|
//layer 2+
|
|
if (this.layer <= MAX_ES_IN_A_ROW)
|
|
{
|
|
return (this.sign === -1 ? "-" : "") + "e".repeat(this.layer) + this.mag;
|
|
}
|
|
else
|
|
{
|
|
return (this.sign === -1 ? "-" : "") + "(e^" + this.layer + ")" + this.mag;
|
|
}
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.toExponential = function (places) {
|
|
if (this.layer === 0)
|
|
{
|
|
return (this.sign*this.mag).toExponential(places);
|
|
}
|
|
return this.toStringWithDecimalPlaces(places);
|
|
};
|
|
|
|
Decimal.prototype.toFixed = function (places) {
|
|
if (this.layer === 0)
|
|
{
|
|
return (this.sign*this.mag).toFixed(places);
|
|
}
|
|
return this.toStringWithDecimalPlaces(places);
|
|
};
|
|
|
|
Decimal.prototype.toPrecision = function (places) {
|
|
if (this.e <= -7) {
|
|
return this.toExponential(places - 1);
|
|
}
|
|
|
|
if (places > this.e) {
|
|
return this.toFixed(places - this.exponent - 1);
|
|
}
|
|
|
|
return this.toExponential(places - 1);
|
|
};
|
|
|
|
Decimal.prototype.valueOf = function () {
|
|
return this.toString();
|
|
};
|
|
|
|
Decimal.prototype.toJSON = function () {
|
|
return this.toString();
|
|
};
|
|
|
|
Decimal.prototype.toStringWithDecimalPlaces = function (places) {
|
|
if (this.layer === 0)
|
|
{
|
|
if ((this.mag < 1e21 && this.mag > 1e-7) || this.mag === 0)
|
|
{
|
|
return (this.sign*this.mag).toFixed(places);
|
|
}
|
|
return decimalPlaces(this.m, places) + "e" + decimalPlaces(this.e, places);
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return decimalPlaces(this.m, places) + "e" + decimalPlaces(this.e, places);
|
|
}
|
|
else
|
|
{
|
|
//layer 2+
|
|
if (this.layer <= MAX_ES_IN_A_ROW)
|
|
{
|
|
return (this.sign === -1 ? "-" : "") + "e".repeat(this.layer) + decimalPlaces(this.mag, places);
|
|
}
|
|
else
|
|
{
|
|
return (this.sign === -1 ? "-" : "") + "(e^" + this.layer + ")" + decimalPlaces(this.mag, places);
|
|
}
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.abs = function () {
|
|
return FC_NN(this.sign === 0 ? 0 : 1, this.layer, this.mag);
|
|
};
|
|
|
|
Decimal.prototype.neg = function () {
|
|
return FC_NN(-this.sign, this.layer, this.mag);
|
|
};
|
|
|
|
Decimal.prototype.negate = function () {
|
|
return this.neg();
|
|
};
|
|
|
|
Decimal.prototype.negated = function () {
|
|
return this.neg();
|
|
};
|
|
|
|
Decimal.prototype.sign = function () {
|
|
return this.sign;
|
|
};
|
|
|
|
Decimal.prototype.sgn = function () {
|
|
return this.sign;
|
|
};
|
|
|
|
Decimal.prototype.round = function () {
|
|
if (this.mag < 0)
|
|
{
|
|
return Decimal.dZero;
|
|
}
|
|
if (this.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, Math.round(this.mag));
|
|
}
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.floor = function () {
|
|
if (this.mag < 0)
|
|
{
|
|
return Decimal.dZero;
|
|
}
|
|
if (this.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, Math.floor(this.mag));
|
|
}
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.ceil = function () {
|
|
if (this.mag < 0)
|
|
{
|
|
return Decimal.dZero;
|
|
}
|
|
if (this.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, Math.ceil(this.mag));
|
|
}
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.trunc = function () {
|
|
if (this.mag < 0)
|
|
{
|
|
return Decimal.dZero;
|
|
}
|
|
if (this.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, Math.trunc(this.mag));
|
|
}
|
|
return this;
|
|
};
|
|
|
|
Decimal.prototype.add = function (value) {
|
|
var decimal = D(value);
|
|
|
|
//inf/nan check
|
|
if (!Number.isFinite(this.layer)) { return this; }
|
|
if (!Number.isFinite(decimal.layer)) { return decimal; }
|
|
|
|
//Special case - if one of the numbers is 0, return the other number.
|
|
if (this.sign === 0) { return decimal; }
|
|
if (decimal.sign === 0) { return this; }
|
|
|
|
//Special case - Adding a number to its negation produces 0, no matter how large.
|
|
if (this.sign === -(decimal.sign) && this.layer === decimal.layer && this.mag === decimal.mag) { return FC_NN(0, 0, 0); }
|
|
|
|
var a;
|
|
var b;
|
|
|
|
//Special case: If one of the numbers is layer 2 or higher, just take the bigger number.
|
|
if ((this.layer >= 2 || decimal.layer >= 2)) { return this.maxabs(decimal); }
|
|
|
|
if (Decimal.cmpabs(this, decimal) > 0)
|
|
{
|
|
a = this;
|
|
b = decimal;
|
|
}
|
|
else
|
|
{
|
|
a = decimal;
|
|
b = this;
|
|
}
|
|
|
|
if (a.layer === 0 && b.layer === 0) { return D(a.sign*a.mag + b.sign*b.mag); }
|
|
|
|
var layera = a.layer*Math.sign(a.mag);
|
|
var layerb = b.layer*Math.sign(b.mag);
|
|
|
|
//If one of the numbers is 2+ layers higher than the other, just take the bigger number.
|
|
if (layera - layerb >= 2) { return a; }
|
|
|
|
if (layera === 0 && layerb === -1)
|
|
{
|
|
if (Math.abs(b.mag-Math.log10(a.mag)) > MAX_SIGNIFICANT_DIGITS)
|
|
{
|
|
return a;
|
|
}
|
|
else
|
|
{
|
|
var magdiff = Math.pow(10, Math.log10(a.mag)-b.mag);
|
|
var mantissa = (b.sign)+(a.sign*magdiff);
|
|
return FC(Math.sign(mantissa), 1, b.mag+Math.log10(Math.abs(mantissa)));
|
|
}
|
|
}
|
|
|
|
if (layera === 1 && layerb === 0)
|
|
{
|
|
if (Math.abs(a.mag-Math.log10(b.mag)) > MAX_SIGNIFICANT_DIGITS)
|
|
{
|
|
return a;
|
|
}
|
|
else
|
|
{
|
|
var magdiff = Math.pow(10, a.mag-Math.log10(b.mag));
|
|
var mantissa = (b.sign)+(a.sign*magdiff);
|
|
return FC(Math.sign(mantissa), 1, Math.log10(b.mag)+Math.log10(Math.abs(mantissa)));
|
|
}
|
|
}
|
|
|
|
if (Math.abs(a.mag-b.mag) > MAX_SIGNIFICANT_DIGITS)
|
|
{
|
|
return a;
|
|
}
|
|
else
|
|
{
|
|
var magdiff = Math.pow(10, a.mag-b.mag);
|
|
var mantissa = (b.sign)+(a.sign*magdiff);
|
|
return FC(Math.sign(mantissa), 1, b.mag+Math.log10(Math.abs(mantissa)));
|
|
}
|
|
|
|
throw Error("Bad arguments to add: " + this + ", " + value);
|
|
};
|
|
|
|
Decimal.prototype.plus = function (value) {
|
|
return this.add(value);
|
|
};
|
|
|
|
Decimal.prototype.sub = function (value) {
|
|
return this.add(D(value).neg());
|
|
};
|
|
|
|
Decimal.prototype.subtract = function (value) {
|
|
return this.sub(value);
|
|
};
|
|
|
|
Decimal.prototype.minus = function (value) {
|
|
return this.sub(value);
|
|
};
|
|
|
|
Decimal.prototype.mul = function (value) {
|
|
var decimal = D(value);
|
|
|
|
//inf/nan check
|
|
if (!Number.isFinite(this.layer)) { return this; }
|
|
if (!Number.isFinite(decimal.layer)) { return decimal; }
|
|
|
|
//Special case - if one of the numbers is 0, return 0.
|
|
if (this.sign === 0 || decimal.sign === 0) { return FC_NN(0, 0, 0); }
|
|
|
|
//Special case - Multiplying a number by its own reciprocal yields +/- 1, no matter how large.
|
|
if (this.layer === decimal.layer && this.mag === -decimal.mag) { return FC_NN(this.sign*decimal.sign, 0, 1); }
|
|
|
|
var a;
|
|
var b;
|
|
|
|
//Which number is bigger in terms of its multiplicative distance from 1?
|
|
if ((this.layer > decimal.layer) || (this.layer == decimal.layer && Math.abs(this.mag) > Math.abs(decimal.mag)))
|
|
{
|
|
a = this;
|
|
b = decimal;
|
|
}
|
|
else
|
|
{
|
|
a = decimal;
|
|
b = this;
|
|
}
|
|
|
|
if (a.layer === 0 && b.layer === 0) { return D(a.sign*b.sign*a.mag*b.mag); }
|
|
|
|
//Special case: If one of the numbers is layer 3 or higher or one of the numbers is 2+ layers bigger than the other, just take the bigger number.
|
|
if (a.layer >= 3 || (a.layer - b.layer >= 2)) { return FC(a.sign*b.sign, a.layer, a.mag); }
|
|
|
|
if (a.layer === 1 && b.layer === 0)
|
|
{
|
|
return FC(a.sign*b.sign, 1, a.mag+Math.log10(b.mag));
|
|
}
|
|
|
|
if (a.layer === 1 && b.layer === 1)
|
|
{
|
|
return FC(a.sign*b.sign, 1, a.mag+b.mag);
|
|
}
|
|
|
|
if (a.layer === 2 && b.layer === 1)
|
|
{
|
|
var newmag = FC(Math.sign(a.mag), a.layer-1, Math.abs(a.mag)).add(FC(Math.sign(b.mag), b.layer-1, Math.abs(b.mag)));
|
|
return FC(a.sign*b.sign, newmag.layer+1, newmag.sign*newmag.mag);
|
|
}
|
|
|
|
if (a.layer === 2 && b.layer === 2)
|
|
{
|
|
var newmag = FC(Math.sign(a.mag), a.layer-1, Math.abs(a.mag)).add(FC(Math.sign(b.mag), b.layer-1, Math.abs(b.mag)));
|
|
return FC(a.sign*b.sign, newmag.layer+1, newmag.sign*newmag.mag);
|
|
}
|
|
|
|
throw Error("Bad arguments to mul: " + this + ", " + value);
|
|
};
|
|
|
|
Decimal.prototype.multiply = function (value) {
|
|
return this.mul(value);
|
|
};
|
|
|
|
Decimal.prototype.times = function (value) {
|
|
return this.mul(value);
|
|
};
|
|
|
|
Decimal.prototype.div = function (value) {
|
|
var decimal = D(value);
|
|
return this.mul(decimal.recip());
|
|
};
|
|
|
|
Decimal.prototype.divide = function (value) {
|
|
return this.div(value);
|
|
};
|
|
|
|
Decimal.prototype.divideBy = function (value) {
|
|
return this.div(value);
|
|
};
|
|
|
|
Decimal.prototype.dividedBy = function (value) {
|
|
return this.div(value);
|
|
};
|
|
|
|
Decimal.prototype.recip = function () {
|
|
if (this.mag === 0)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, 1/this.mag);
|
|
}
|
|
else
|
|
{
|
|
return FC(this.sign, this.layer, -this.mag);
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.reciprocal = function () {
|
|
return this.recip();
|
|
};
|
|
|
|
Decimal.prototype.reciprocate = function () {
|
|
return this.recip();
|
|
};
|
|
|
|
/**
|
|
* -1 for less than value, 0 for equals value, 1 for greater than value
|
|
*/
|
|
Decimal.prototype.cmp = function (value) {
|
|
var decimal = D(value);
|
|
if (this.sign > decimal.sign) { return 1; }
|
|
if (this.sign < decimal.sign) { return -1; }
|
|
return this.sign*this.cmpabs(value);
|
|
};
|
|
|
|
Decimal.prototype.cmpabs = function (value) {
|
|
var decimal = D(value);
|
|
var layera = this.mag > 0 ? this.layer : -this.layer;
|
|
var layerb = decimal.mag > 0 ? decimal.layer : -decimal.layer;
|
|
if (layera > layerb) { return 1; }
|
|
if (layera < layerb) { return -1; }
|
|
if (this.mag > decimal.mag) { return 1; }
|
|
if (this.mag < decimal.mag) { return -1; }
|
|
return 0;
|
|
};
|
|
|
|
Decimal.prototype.compare = function (value) {
|
|
return this.cmp(value);
|
|
};
|
|
|
|
Decimal.prototype.eq = function (value) {
|
|
var decimal = D(value);
|
|
return this.sign === decimal.sign && this.layer === decimal.layer && this.mag === decimal.mag;
|
|
};
|
|
|
|
Decimal.prototype.equals = function (value) {
|
|
return this.eq(value);
|
|
};
|
|
|
|
Decimal.prototype.neq = function (value) {
|
|
return !this.eq(value);
|
|
};
|
|
|
|
Decimal.prototype.notEquals = function (value) {
|
|
return this.neq(value);
|
|
};
|
|
|
|
Decimal.prototype.lt = function (value) {
|
|
var decimal = D(value);
|
|
return this.cmp(value) === -1;
|
|
};
|
|
|
|
Decimal.prototype.lte = function (value) {
|
|
return !this.gt(value);
|
|
};
|
|
|
|
Decimal.prototype.gt = function (value) {
|
|
var decimal = D(value);
|
|
return this.cmp(value) === 1;
|
|
};
|
|
|
|
Decimal.prototype.gte = function (value) {
|
|
return !this.lt(value);
|
|
};
|
|
|
|
Decimal.prototype.max = function (value) {
|
|
var decimal = D(value);
|
|
return this.lt(decimal) ? decimal : this;
|
|
};
|
|
|
|
Decimal.prototype.min = function (value) {
|
|
var decimal = D(value);
|
|
return this.gt(decimal) ? decimal : this;
|
|
};
|
|
|
|
Decimal.prototype.maxabs = function (value) {
|
|
var decimal = D(value);
|
|
return this.cmpabs(decimal) < 0 ? decimal : this;
|
|
};
|
|
|
|
Decimal.prototype.minabs = function (value) {
|
|
var decimal = D(value);
|
|
return this.cmpabs(decimal) > 0 ? decimal : this;
|
|
};
|
|
|
|
Decimal.prototype.clamp = function(min, max) {
|
|
return this.max(min).min(max);
|
|
}
|
|
|
|
Decimal.prototype.clampMin = function(min) {
|
|
return this.max(min);
|
|
}
|
|
|
|
Decimal.prototype.clampMax = function(max) {
|
|
return this.min(max);
|
|
}
|
|
|
|
Decimal.prototype.cmp_tolerance = function (value, tolerance) {
|
|
var decimal = D(value);
|
|
return this.eq_tolerance(decimal, tolerance) ? 0 : this.cmp(decimal);
|
|
};
|
|
|
|
Decimal.prototype.compare_tolerance = function (value, tolerance) {
|
|
return this.cmp_tolerance(value, tolerance);
|
|
};
|
|
|
|
/**
|
|
* Tolerance is a relative tolerance, multiplied by the greater of the magnitudes of the two arguments.
|
|
* For example, if you put in 1e-9, then any number closer to the
|
|
* larger number than (larger number)*1e-9 will be considered equal.
|
|
*/
|
|
Decimal.prototype.eq_tolerance = function (value, tolerance) {
|
|
var decimal = D(value); // https://stackoverflow.com/a/33024979
|
|
if (tolerance == null) { tolerance = 1e-7; }
|
|
//Numbers that are too far away are never close.
|
|
if (this.sign !== decimal.sign) { return false; }
|
|
if (Math.abs(this.layer - decimal.layer) > 1) { return false; }
|
|
// return abs(a-b) <= tolerance * max(abs(a), abs(b))
|
|
var magA = this.mag;
|
|
var magB = decimal.mag;
|
|
if (this.layer > decimal.layer) { magB = f_maglog10(magB); }
|
|
if (this.layer < decimal.layer) { magA = f_maglog10(magA); }
|
|
return Math.abs(magA-magB) <= tolerance*Math.max(Math.abs(magA), Math.abs(magB));
|
|
};
|
|
|
|
Decimal.prototype.equals_tolerance = function (value, tolerance) {
|
|
return this.eq_tolerance(value, tolerance);
|
|
};
|
|
|
|
Decimal.prototype.neq_tolerance = function (value, tolerance) {
|
|
return !this.eq_tolerance(value, tolerance);
|
|
};
|
|
|
|
Decimal.prototype.notEquals_tolerance = function (value, tolerance) {
|
|
return this.neq_tolerance(value, tolerance);
|
|
};
|
|
|
|
Decimal.prototype.lt_tolerance = function (value, tolerance) {
|
|
var decimal = D(value);
|
|
return !this.eq_tolerance(decimal, tolerance) && this.lt(decimal);
|
|
};
|
|
|
|
Decimal.prototype.lte_tolerance = function (value, tolerance) {
|
|
var decimal = D(value);
|
|
return this.eq_tolerance(decimal, tolerance) || this.lt(decimal);
|
|
};
|
|
|
|
Decimal.prototype.gt_tolerance = function (value, tolerance) {
|
|
var decimal = D(value);
|
|
return !this.eq_tolerance(decimal, tolerance) && this.gt(decimal);
|
|
};
|
|
|
|
Decimal.prototype.gte_tolerance = function (value, tolerance) {
|
|
var decimal = D(value);
|
|
return this.eq_tolerance(decimal, tolerance) || this.gt(decimal);
|
|
};
|
|
|
|
Decimal.prototype.pLog10 = function() {
|
|
if (this.lt(Decimal.dZero)) { return Decimal.dZero; }
|
|
return this.log10();
|
|
}
|
|
|
|
Decimal.prototype.absLog10 = function () {
|
|
if (this.sign === 0)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
else if (this.layer > 0)
|
|
{
|
|
return FC(Math.sign(this.mag), this.layer-1, Math.abs(this.mag));
|
|
}
|
|
else
|
|
{
|
|
return FC(1, 0, Math.log10(this.mag));
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.log10 = function () {
|
|
if (this.sign <= 0)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
else if (this.layer > 0)
|
|
{
|
|
return FC(Math.sign(this.mag), this.layer-1, Math.abs(this.mag));
|
|
}
|
|
else
|
|
{
|
|
return FC(this.sign, 0, Math.log10(this.mag));
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.log = function (base) {
|
|
base = D(base);
|
|
if (this.sign <= 0)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
if (base.sign <= 0)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
if (base.sign === 1 && base.layer === 0 && base.mag === 1)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
else if (this.layer === 0 && base.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, Math.log(this.mag)/Math.log(base.mag));
|
|
}
|
|
|
|
return Decimal.div(this.log10(), base.log10());
|
|
};
|
|
|
|
Decimal.prototype.log2 = function () {
|
|
if (this.sign <= 0)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, Math.log2(this.mag));
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return FC(Math.sign(this.mag), 0, Math.abs(this.mag)*3.321928094887362); //log2(10)
|
|
}
|
|
else if (this.layer === 2)
|
|
{
|
|
return FC(Math.sign(this.mag), 1, Math.abs(this.mag)+0.5213902276543247); //-log10(log10(2))
|
|
}
|
|
else
|
|
{
|
|
return FC(Math.sign(this.mag), this.layer-1, Math.abs(this.mag));
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.ln = function () {
|
|
if (this.sign <= 0)
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
return FC(this.sign, 0, Math.log(this.mag));
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return FC(Math.sign(this.mag), 0, Math.abs(this.mag)*2.302585092994046); //ln(10)
|
|
}
|
|
else if (this.layer === 2)
|
|
{
|
|
return FC(Math.sign(this.mag), 1, Math.abs(this.mag)+0.36221568869946325); //log10(log10(e))
|
|
}
|
|
else
|
|
{
|
|
return FC(Math.sign(this.mag), this.layer-1, Math.abs(this.mag));
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.logarithm = function (base) {
|
|
return this.log(base);
|
|
};
|
|
|
|
Decimal.prototype.pow = function (value) {
|
|
var decimal = D(value);
|
|
var a = this;
|
|
var b = decimal;
|
|
|
|
//special case: if a is 0, then return 0
|
|
if (a.sign === 0) { return a; }
|
|
//special case: if a is 1, then return 1
|
|
if (a.sign === 1 && a.layer === 0 && a.mag === 1) { return a; }
|
|
//special case: if b is 0, then return 1
|
|
if (b.sign === 0) { return FC_NN(1, 0, 1); }
|
|
//special case: if b is 1, then return a
|
|
if (b.sign === 1 && b.layer === 0 && b.mag === 1) { return a; }
|
|
|
|
var result = (a.absLog10().mul(b)).pow10();
|
|
|
|
if (this.sign === -1 && b.toNumber() % 2 === 1) {
|
|
return result.neg();
|
|
}
|
|
|
|
return result;
|
|
};
|
|
|
|
Decimal.prototype.pow10 = function() {
|
|
/*
|
|
There are four cases we need to consider:
|
|
1) positive sign, positive mag (e15, ee15): +1 layer (e.g. 10^15 becomes e15, 10^e15 becomes ee15)
|
|
2) negative sign, positive mag (-e15, -ee15): +1 layer but sign and mag sign are flipped (e.g. 10^-15 becomes e-15, 10^-e15 becomes ee-15)
|
|
3) positive sign, negative mag (e-15, ee-15): layer 0 case would have been handled in the Math.pow check, so just return 1
|
|
4) negative sign, negative mag (-e-15, -ee-15): layer 0 case would have been handled in the Math.pow check, so just return 1
|
|
*/
|
|
|
|
if (!Number.isFinite(this.layer) || !Number.isFinite(this.mag)) { return Decimal.dNaN; }
|
|
|
|
var a = this;
|
|
|
|
//handle layer 0 case - if no precision is lost just use Math.pow, else promote one layer
|
|
if (a.layer === 0)
|
|
{
|
|
var newmag = Math.pow(10, a.sign*a.mag);
|
|
if (Number.isFinite(newmag) && Math.abs(newmag) > 0.1) { return FC(1, 0, newmag); }
|
|
else
|
|
{
|
|
if (a.sign === 0) { return Decimal.dOne; }
|
|
else { a = FC_NN(a.sign, a.layer+1, Math.log10(a.mag)); }
|
|
}
|
|
}
|
|
|
|
//handle all 4 layer 1+ cases individually
|
|
if (a.sign > 0 && a.mag > 0)
|
|
{
|
|
return FC(a.sign, a.layer+1, a.mag);
|
|
}
|
|
if (a.sign < 0 && a.mag > 0)
|
|
{
|
|
return FC(-a.sign, a.layer+1, -a.mag);
|
|
}
|
|
//both the negative mag cases are identical: one +/- rounding error
|
|
return Decimal.dOne;
|
|
}
|
|
|
|
Decimal.prototype.pow_base = function (value) {
|
|
return D(value).pow(this);
|
|
};
|
|
|
|
Decimal.prototype.root = function (value) {
|
|
var decimal = D(value);
|
|
return this.pow(decimal.recip());
|
|
}
|
|
|
|
Decimal.prototype.factorial = function () {
|
|
if (this.mag < 0)
|
|
{
|
|
return this.toNumber().add(1).gamma();
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
return this.add(1).gamma();
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return Decimal.exp(Decimal.mul(this, Decimal.ln(this).sub(1)));
|
|
}
|
|
else
|
|
{
|
|
return Decimal.exp(this);
|
|
}
|
|
};
|
|
|
|
//from HyperCalc source code
|
|
Decimal.prototype.gamma = function () {
|
|
if (this.mag < 0)
|
|
{
|
|
return this.recip();
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
if (this.lt(FC_NN(1, 0, 24)))
|
|
{
|
|
return D(f_gamma(this.sign*this.mag));
|
|
}
|
|
|
|
var t = this.mag - 1;
|
|
var l = 0.9189385332046727; //0.5*Math.log(2*Math.PI)
|
|
l = (l+((t+0.5)*Math.log(t)));
|
|
l = l-t;
|
|
var n2 = t*t;
|
|
var np = t;
|
|
var lm = 12*np;
|
|
var adj = 1/lm;
|
|
var l2 = l+adj;
|
|
if (l2 === l)
|
|
{
|
|
return Decimal.exp(l);
|
|
}
|
|
|
|
l = l2;
|
|
np = np*n2;
|
|
lm = 360*np;
|
|
adj = 1/lm;
|
|
l2 = l-adj;
|
|
if (l2 === l)
|
|
{
|
|
return Decimal.exp(l);
|
|
}
|
|
|
|
l = l2;
|
|
np = np*n2;
|
|
lm = 1260*np;
|
|
var lt = 1/lm;
|
|
l = l+lt;
|
|
np = np*n2;
|
|
lm = 1680*np;
|
|
lt = 1/lm;
|
|
l = l-lt;
|
|
return Decimal.exp(l);
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return Decimal.exp(Decimal.mul(this, Decimal.ln(this).sub(1)));
|
|
}
|
|
else
|
|
{
|
|
return Decimal.exp(this);
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.lngamma = function () {
|
|
return this.gamma().ln();
|
|
}
|
|
|
|
Decimal.prototype.exp = function () {
|
|
if (this.mag < 0) { return Decimal.dOne; }
|
|
if (this.layer === 0 && this.mag <= 709.7) { return D(Math.exp(this.sign*this.mag)); }
|
|
else if (this.layer === 0) { return FC(1, 1, this.sign*Math.log10(Math.E)*this.mag); }
|
|
else if (this.layer === 1) { return FC(1, 2, this.sign*(Math.log10(0.4342944819032518)+this.mag)); }
|
|
else { return FC(1, this.layer+1, this.sign*this.mag); }
|
|
};
|
|
|
|
Decimal.prototype.sqr = function () {
|
|
return this.pow(2);
|
|
};
|
|
|
|
Decimal.prototype.sqrt = function () {
|
|
if (this.layer === 0) { return D(Math.sqrt(this.sign*this.mag)); }
|
|
else if (this.layer === 1) { return FC(1, 2, Math.log10(this.mag)-0.3010299956639812); }
|
|
else
|
|
{
|
|
var result = Decimal.div(FC_NN(this.sign, this.layer-1, this.mag), FC_NN(1, 0, 2));
|
|
result.layer += 1;
|
|
result.normalize();
|
|
return result;
|
|
}
|
|
};
|
|
|
|
Decimal.prototype.cube = function () {
|
|
return this.pow(3);
|
|
};
|
|
|
|
Decimal.prototype.cbrt = function () {
|
|
return this.pow(1/3);
|
|
};
|
|
|
|
//Tetration/tetrate: The result of exponentiating 'this' to 'this' 'height' times in a row. https://en.wikipedia.org/wiki/Tetration
|
|
//If payload != 1, then this is 'iterated exponentiation', the result of exping (payload) to base (this) (height) times. https://andydude.github.io/tetration/archives/tetration2/ident.html
|
|
//Works with negative and positive real heights.
|
|
Decimal.prototype.tetrate = function(height = 2, payload = FC_NN(1, 0, 1)) {
|
|
if (height === Number.POSITIVE_INFINITY)
|
|
{
|
|
//Formula for infinite height power tower.
|
|
var negln = Decimal.ln(this).neg();
|
|
return negln.lambertw().div(negln);
|
|
}
|
|
|
|
if (height < 0)
|
|
{
|
|
return Decimal.iteratedlog(payload, this, -height);
|
|
}
|
|
|
|
payload = D(payload);
|
|
var oldheight = height;
|
|
height = Math.trunc(height);
|
|
var fracheight = oldheight-height;
|
|
|
|
if (fracheight !== 0)
|
|
{
|
|
if (payload.eq(Decimal.dOne))
|
|
{
|
|
++height;
|
|
payload = new Decimal(fracheight);
|
|
}
|
|
else
|
|
{
|
|
if (this.eq(10))
|
|
{
|
|
payload = payload.layeradd10(fracheight);
|
|
}
|
|
else
|
|
{
|
|
payload = payload.layeradd(fracheight, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < height; ++i)
|
|
{
|
|
payload = this.pow(payload);
|
|
//bail if we're NaN
|
|
if (!isFinite(payload.layer) || !isFinite(payload.mag)) { return payload; }
|
|
//shortcut
|
|
if (payload.layer - this.layer > 3) { return FC_NN(payload.sign, payload.layer + (height - i - 1), payload.mag); }
|
|
//give up after 100 iterations if nothing is happening
|
|
if (i > 100) { return payload; }
|
|
}
|
|
return payload;
|
|
}
|
|
|
|
//iteratedexp/iterated exponentiation: - all cases handled in tetrate, so just call it
|
|
Decimal.prototype.iteratedexp = function(height = 2, payload = FC_NN(1, 0, 1)) {
|
|
return this.tetrate(height, payload);
|
|
}
|
|
|
|
//iterated log/repeated log: The result of applying log(base) 'times' times in a row. Approximately equal to subtracting (times) from the number's slog representation. Equivalent to tetrating to a negative height.
|
|
//Works with negative and positive real heights.
|
|
Decimal.prototype.iteratedlog = function(base = 10, times = 1) {
|
|
if (times < 0)
|
|
{
|
|
return Decimal.tetrate(base, -times, this);
|
|
}
|
|
|
|
base = D(base);
|
|
var result = D(this);
|
|
var fulltimes = times;
|
|
times = Math.trunc(times);
|
|
var fraction = fulltimes - times;
|
|
if (result.layer - base.layer > 3)
|
|
{
|
|
var layerloss = Math.min(times, (result.layer - base.layer - 3));
|
|
times -= layerloss;
|
|
result.layer -= layerloss;
|
|
}
|
|
|
|
for (var i = 0; i < times; ++i)
|
|
{
|
|
result = result.log(base);
|
|
//bail if we're NaN
|
|
if (!isFinite(result.layer) || !isFinite(result.mag)) { return result; }
|
|
//give up after 100 iterations if nothing is happening
|
|
if (i > 100) { return result; }
|
|
}
|
|
|
|
//handle fractional part
|
|
if (fraction > 0 && fraction < 1)
|
|
{
|
|
if (base.eq(10))
|
|
{
|
|
result = result.layeradd10(-fraction);
|
|
}
|
|
else
|
|
{
|
|
result = result.layeradd(-fraction, base);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//Super-logarithm, one of tetration's inverses, tells you what size power tower you'd have to tetrate base to to get number. By definition, will never be higher than 1.8e308 in break_eternity.js, since a power tower 1.8e308 numbers tall is the largest representable number.
|
|
// https://en.wikipedia.org/wiki/Super-logarithm
|
|
Decimal.prototype.slog = function(base = 10) {
|
|
if (this.mag < 0) { return Decimal.dNegOne; }
|
|
|
|
base = D(base);
|
|
|
|
var result = 0;
|
|
var copy = D(this);
|
|
if (copy.layer - base.layer > 3)
|
|
{
|
|
var layerloss = (copy.layer - base.layer - 3);
|
|
result += layerloss;
|
|
copy.layer -= layerloss;
|
|
}
|
|
|
|
for (var i = 0; i < 100; ++i)
|
|
{
|
|
if (copy.lt(Decimal.dZero))
|
|
{
|
|
copy = Decimal.pow(base, copy);
|
|
result -= 1;
|
|
}
|
|
else if (copy.lte(Decimal.dOne))
|
|
{
|
|
return D(result + copy.toNumber() - 1); //<-- THIS IS THE CRITICAL FUNCTION
|
|
//^ Also have to change tetrate payload handling and layeradd10 if this is changed!
|
|
}
|
|
else
|
|
{
|
|
result += 1;
|
|
copy = Decimal.log(copy, base);
|
|
}
|
|
}
|
|
return D(result);
|
|
}
|
|
|
|
//Approximations taken from the excellent paper https://web.archive.org/web/20090201164836/http://tetration.itgo.com/paper.html !
|
|
//Not using for now unless I can figure out how to use it in all the related functions.
|
|
/*var slog_criticalfunction_1 = function(x, z) {
|
|
z = z.toNumber();
|
|
return -1 + z;
|
|
}
|
|
|
|
var slog_criticalfunction_2 = function(x, z) {
|
|
z = z.toNumber();
|
|
var lnx = x.ln();
|
|
if (lnx.layer === 0)
|
|
{
|
|
lnx = lnx.toNumber();
|
|
return -1 + z*2*lnx/(1+lnx) - z*z*(1-lnx)/(1+lnx);
|
|
}
|
|
else
|
|
{
|
|
var term1 = lnx.mul(z*2).div(lnx.add(1));
|
|
var term2 = Decimal.sub(1, lnx).mul(z*z).div(lnx.add(1));
|
|
Decimal.dNegOne.add(Decimal.sub(term1, term2));
|
|
}
|
|
}
|
|
|
|
var slog_criticalfunction_3 = function(x, z) {
|
|
z = z.toNumber();
|
|
var lnx = x.ln();
|
|
var lnx2 = lnx.sqr();
|
|
var lnx3 = lnx.cube();
|
|
if (lnx.layer === 0 && lnx2.layer === 0 && lnx3.layer === 0)
|
|
{
|
|
lnx = lnx.toNumber();
|
|
lnx2 = lnx2.toNumber();
|
|
lnx3 = lnx3.toNumber();
|
|
|
|
var term1 = 6*z*(lnx+lnx3);
|
|
var term2 = 3*z*z*(3*lnx2-2*lnx3);
|
|
var term3 = 2*z*z*z*(1-lnx-2*lnx2+lnx3);
|
|
var top = term1+term2+term3;
|
|
var bottom = 2+4*lnx+5*lnx2+2*lnx3;
|
|
|
|
return -1 + top/bottom;
|
|
}
|
|
else
|
|
{
|
|
var term1 = (lnx.add(lnx3)).mul(6*z);
|
|
var term2 = (lnx2.mul(3).sub(lnx3.mul(2))).mul(3*z*z);
|
|
var term3 = (Decimal.dOne.sub(lnx).sub(lnx2.mul(2)).add(lnx3)).mul(2*z*z*z);
|
|
var top = term1.add(term2).add(term3);
|
|
var bottom = new Decimal(2).add(lnx.mul(4)).add(lnx2.mul(5)).add(lnx3.mul(2));
|
|
|
|
return Decimal.dNegOne.add(top.div(bottom));
|
|
}
|
|
}*/
|
|
|
|
//Function for adding/removing layers from a Decimal, even fractional layers (e.g. its slog10 representation).
|
|
//Everything continues to use the linear approximation ATM.
|
|
Decimal.prototype.layeradd10 = function(diff) {
|
|
diff = Decimal.fromValue_noAlloc(diff).toNumber();
|
|
var result = D(this);
|
|
if (diff >= 1)
|
|
{
|
|
var layeradd = Math.trunc(diff);
|
|
diff -= layeradd;
|
|
result.layer += layeradd;
|
|
}
|
|
if (diff <= -1)
|
|
{
|
|
var layeradd = Math.trunc(diff);
|
|
diff -= layeradd;
|
|
result.layer += layeradd;
|
|
if (result.layer < 0)
|
|
{
|
|
for (var i = 0; i < 100; ++i)
|
|
{
|
|
result.layer++;
|
|
result.mag = Math.log10(result.mag);
|
|
if (!isFinite(result.mag)) { return result; }
|
|
if (result.layer >= 0) { break; }
|
|
}
|
|
}
|
|
}
|
|
|
|
//layeradd10: like adding 'diff' to the number's slog(base) representation. Very similar to tetrate base 10 and iterated log base 10. Also equivalent to adding a fractional amount to the number's layer in its break_eternity.js representation.
|
|
if (diff > 0)
|
|
{
|
|
var subtractlayerslater = 0;
|
|
//Ironically, this edge case would be unnecessary if we had 'negative layers'.
|
|
while (Number.isFinite(result.mag) && result.mag < 10)
|
|
{
|
|
result.mag = Math.pow(10, result.mag);
|
|
++subtractlayerslater;
|
|
}
|
|
|
|
//A^(10^B) === C, solve for B
|
|
//B === log10(logA(C))
|
|
|
|
if (result.mag > 1e10)
|
|
{
|
|
result.mag = Math.log10(result.mag);
|
|
result.layer++;
|
|
}
|
|
|
|
//Note that every integer slog10 value, the formula changes, so if we're near such a number, we have to spend exactly enough layerdiff to hit it, and then use the new formula.
|
|
var diffToNextSlog = Math.log10(Math.log(1e10)/Math.log(result.mag), 10);
|
|
if (diffToNextSlog < diff)
|
|
{
|
|
result.mag = Math.log10(1e10);
|
|
result.layer++;
|
|
diff -= diffToNextSlog;
|
|
}
|
|
|
|
result.mag = Math.pow(result.mag, Math.pow(10, diff));
|
|
|
|
while (subtractlayerslater > 0)
|
|
{
|
|
result.mag = Math.log10(result.mag);
|
|
--subtractlayerslater;
|
|
}
|
|
}
|
|
else if (diff < 0)
|
|
{
|
|
var subtractlayerslater = 0;
|
|
|
|
while (Number.isFinite(result.mag) && result.mag < 10)
|
|
{
|
|
result.mag = Math.pow(10, result.mag);
|
|
++subtractlayerslater;
|
|
}
|
|
|
|
if (result.mag > 1e10)
|
|
{
|
|
result.mag = Math.log10(result.mag);
|
|
result.layer++;
|
|
}
|
|
|
|
var diffToNextSlog = Math.log10(1/Math.log10(result.mag));
|
|
if (diffToNextSlog > diff)
|
|
{
|
|
result.mag = 1e10;
|
|
result.layer--;
|
|
diff -= diffToNextSlog;
|
|
}
|
|
|
|
result.mag = Math.pow(result.mag, Math.pow(10, diff));
|
|
|
|
while (subtractlayerslater > 0)
|
|
{
|
|
result.mag = Math.log10(result.mag);
|
|
--subtractlayerslater;
|
|
}
|
|
}
|
|
|
|
while (result.layer < 0)
|
|
{
|
|
result.layer++;
|
|
result.mag = Math.log10(result.mag);
|
|
}
|
|
result.normalize();
|
|
return result;
|
|
}
|
|
|
|
//layeradd: like adding 'diff' to the number's slog(base) representation. Very similar to tetrate base 'base' and iterated log base 'base'.
|
|
Decimal.prototype.layeradd = function(diff, base) {
|
|
var slogthis = this.slog(base).toNumber();
|
|
var slogdest = slogthis+diff;
|
|
if (slogdest >= 0)
|
|
{
|
|
return Decimal.tetrate(base, slogdest);
|
|
}
|
|
else if (!Number.isFinite(slogdest))
|
|
{
|
|
return Decimal.dNaN;
|
|
}
|
|
else if (slogdest >= -1)
|
|
{
|
|
return Decimal.log(Decimal.tetrate(base, slogdest+1), base);
|
|
}
|
|
else
|
|
{
|
|
Decimal.log(Decimal.log(Decimal.tetrate(base, slogdest+2), base), base);
|
|
}
|
|
}
|
|
|
|
//The Lambert W function, also called the omega function or product logarithm, is the solution W(x) === x*e^x.
|
|
// https://en.wikipedia.org/wiki/Lambert_W_function
|
|
//Some special values, for testing: https://en.wikipedia.org/wiki/Lambert_W_function#Special_values
|
|
Decimal.prototype.lambertw = function() {
|
|
if (this.lt(-0.3678794411710499))
|
|
{
|
|
throw Error("lambertw is unimplemented for results less than -1, sorry!");
|
|
}
|
|
else if (this.mag < 0)
|
|
{
|
|
return D(f_lambertw(this.toNumber()));
|
|
}
|
|
else if (this.layer === 0)
|
|
{
|
|
return D(f_lambertw(this.sign*this.mag));
|
|
}
|
|
else if (this.layer === 1)
|
|
{
|
|
return d_lambertw(this);
|
|
}
|
|
else if (this.layer === 2)
|
|
{
|
|
return d_lambertw(this);
|
|
}
|
|
if (this.layer >= 3)
|
|
{
|
|
return FC_NN(this.sign, this.layer-1, this.mag);
|
|
}
|
|
}
|
|
|
|
//from https://github.com/scipy/scipy/blob/8dba340293fe20e62e173bdf2c10ae208286692f/scipy/special/lambertw.pxd
|
|
// The evaluation can become inaccurate very close to the branch point
|
|
// at ``-1/e``. In some corner cases, `lambertw` might currently
|
|
// fail to converge, or can end up on the wrong branch.
|
|
var d_lambertw = function(z, tol = 1e-10) {
|
|
var w;
|
|
var ew, wew, wewz, wn;
|
|
|
|
if (!Number.isFinite(z.mag)) { return z; }
|
|
if (z === 0)
|
|
{
|
|
return z;
|
|
}
|
|
if (z === 1)
|
|
{
|
|
//Split out this case because the asymptotic series blows up
|
|
return OMEGA;
|
|
}
|
|
|
|
var absz = Decimal.abs(z);
|
|
//Get an initial guess for Halley's method
|
|
w = Decimal.ln(z);
|
|
|
|
//Halley's method; see 5.9 in [1]
|
|
|
|
for (var i = 0; i < 100; ++i)
|
|
{
|
|
ew = Decimal.exp(-w);
|
|
wewz = w.sub(z.mul(ew));
|
|
wn = w.sub(wewz.div(w.add(1).sub((w.add(2)).mul(wewz).div((Decimal.mul(2, w).add(2))))));
|
|
if (Decimal.abs(wn.sub(w)).lt(Decimal.abs(wn).mul(tol)))
|
|
{
|
|
return wn;
|
|
}
|
|
else
|
|
{
|
|
w = wn;
|
|
}
|
|
}
|
|
|
|
throw Error("Iteration failed to converge: " + z);
|
|
//return Decimal.dNaN;
|
|
}
|
|
|
|
//The super square-root function - what number, tetrated to height 2, equals this?
|
|
//Other sroots are possible to calculate probably through guess and check methods, this one is easy though.
|
|
// https://en.wikipedia.org/wiki/Tetration#Super-root
|
|
Decimal.prototype.ssqrt = function() {
|
|
if (this.sign == 1 && this.layer >= 3)
|
|
{
|
|
return FC_NN(this.sign, this.layer-1, this.mag)
|
|
}
|
|
var lnx = this.ln();
|
|
return lnx.div(lnx.lambertw());
|
|
}
|
|
/*
|
|
|
|
Unit tests for tetrate/iteratedexp/iteratedlog/layeradd10/layeradd/slog:
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var first = Math.random()*100;
|
|
var both = Math.random()*100;
|
|
var expected = first+both+1;
|
|
var result = new Decimal(10).layeradd10(first).layeradd10(both).slog();
|
|
if (Number.isFinite(result.mag) && !Decimal.eq_tolerance(expected, result))
|
|
{
|
|
console.log(first + ", " + both);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var first = Math.random()*100;
|
|
var both = Math.random()*100;
|
|
first += both;
|
|
var expected = first-both+1;
|
|
var result = new Decimal(10).layeradd10(first).layeradd10(-both).slog();
|
|
if (Number.isFinite(result.mag) && !Decimal.eq_tolerance(expected, result))
|
|
{
|
|
console.log(first + ", " + both);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var first = Math.random()*100;
|
|
var both = Math.random()*100;
|
|
var base = Math.random()*8+2;
|
|
var expected = first+both+1;
|
|
var result = new Decimal(base).layeradd(first, base).layeradd(both, base).slog(base);
|
|
if (Number.isFinite(result.mag) && !Decimal.eq_tolerance(expected, result))
|
|
{
|
|
console.log(first + ", " + both);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var first = Math.random()*100;
|
|
var both = Math.random()*100;
|
|
var base = Math.random()*8+2;
|
|
first += both;
|
|
var expected = first-both+1;
|
|
var result = new Decimal(base).layeradd(first, base).layeradd(-both, base).slog(base);
|
|
if (Number.isFinite(result.mag) && !Decimal.eq_tolerance(expected, result))
|
|
{
|
|
console.log(first + ", " + both);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var first = Math.round((Math.random()*30))/10;
|
|
var both = Math.round((Math.random()*30))/10;
|
|
var tetrateonly = Decimal.tetrate(10, first);
|
|
var tetrateandlog = Decimal.tetrate(10, first+both).iteratedlog(10, both);
|
|
if (!Decimal.eq_tolerance(tetrateonly, tetrateandlog))
|
|
{
|
|
console.log(first + ", " + both);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var first = Math.round((Math.random()*30))/10;
|
|
var both = Math.round((Math.random()*30))/10;
|
|
var base = Math.random()*8+2;
|
|
var tetrateonly = Decimal.tetrate(base, first);
|
|
var tetrateandlog = Decimal.tetrate(base, first+both).iteratedlog(base, both);
|
|
if (!Decimal.eq_tolerance(tetrateonly, tetrateandlog))
|
|
{
|
|
console.log(first + ", " + both);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var first = Math.round((Math.random()*30))/10;
|
|
var both = Math.round((Math.random()*30))/10;
|
|
var base = Math.random()*8+2;
|
|
var tetrateonly = Decimal.tetrate(base, first, base);
|
|
var tetrateandlog = Decimal.tetrate(base, first+both, base).iteratedlog(base, both);
|
|
if (!Decimal.eq_tolerance(tetrateonly, tetrateandlog))
|
|
{
|
|
console.log(first + ", " + both);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var xex = new Decimal(-0.3678794411710499+Math.random()*100);
|
|
var x = Decimal.lambertw(xex);
|
|
if (!Decimal.eq_tolerance(xex, x.mul(Decimal.exp(x))))
|
|
{
|
|
console.log(xex);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var xex = new Decimal(-0.3678794411710499+Math.exp(Math.random()*100));
|
|
var x = Decimal.lambertw(xex);
|
|
if (!Decimal.eq_tolerance(xex, x.mul(Decimal.exp(x))))
|
|
{
|
|
console.log(xex);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 1000; ++i)
|
|
{
|
|
var a = Decimal.randomDecimalForTesting(Math.random() > 0.5 ? 0 : 1);
|
|
var b = Decimal.randomDecimalForTesting(Math.random() > 0.5 ? 0 : 1);
|
|
if (Math.random() > 0.5) { a = a.recip(); }
|
|
if (Math.random() > 0.5) { b = b.recip(); }
|
|
var c = a.add(b).toNumber();
|
|
if (Number.isFinite(c) && !Decimal.eq_tolerance(c, a.toNumber()+b.toNumber()))
|
|
{
|
|
console.log(a + ", " + b);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 100; ++i)
|
|
{
|
|
var a = Decimal.randomDecimalForTesting(Math.round(Math.random()*4));
|
|
var b = Decimal.randomDecimalForTesting(Math.round(Math.random()*4));
|
|
if (Math.random() > 0.5) { a = a.recip(); }
|
|
if (Math.random() > 0.5) { b = b.recip(); }
|
|
var c = a.mul(b).toNumber();
|
|
if (Number.isFinite(c) && Number.isFinite(a.toNumber()) && Number.isFinite(b.toNumber()) && a.toNumber() != 0 && b.toNumber() != 0 && c != 0 && !Decimal.eq_tolerance(c, a.toNumber()*b.toNumber()))
|
|
{
|
|
console.log("Test 1: " + a + ", " + b);
|
|
}
|
|
else if (!Decimal.mul(a.recip(), b.recip()).eq_tolerance(Decimal.mul(a, b).recip()))
|
|
{
|
|
console.log("Test 3: " + a + ", " + b);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 10; ++i)
|
|
{
|
|
var a = Decimal.randomDecimalForTesting(Math.round(Math.random()*4));
|
|
var b = Decimal.randomDecimalForTesting(Math.round(Math.random()*4));
|
|
if (Math.random() > 0.5 && a.sign !== 0) { a = a.recip(); }
|
|
if (Math.random() > 0.5 && b.sign !== 0) { b = b.recip(); }
|
|
var c = a.pow(b);
|
|
var d = a.root(b.recip());
|
|
var e = a.pow(b.recip());
|
|
var f = a.root(b);
|
|
|
|
if (!c.eq_tolerance(d) && a.sign !== 0 && b.sign !== 0)
|
|
{
|
|
console.log("Test 1: " + a + ", " + b);
|
|
}
|
|
if (!e.eq_tolerance(f) && a.sign !== 0 && b.sign !== 0)
|
|
{
|
|
console.log("Test 2: " + a + ", " + b);
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 10; ++i)
|
|
{
|
|
var a = Math.round(Math.random()*18-9);
|
|
var b = Math.round(Math.random()*100-50);
|
|
var c = Math.round(Math.random()*18-9);
|
|
var d = Math.round(Math.random()*100-50);
|
|
console.log("Decimal.pow(Decimal.fromMantissaExponent(" + a + ", " + b + "), Decimal.fromMantissaExponent(" + c + ", " + d + ")).toString()");
|
|
}
|
|
|
|
*/
|
|
|
|
//Pentation/pentate: The result of tetrating 'height' times in a row. An absurdly strong operator - Decimal.pentate(2, 4.28) and Decimal.pentate(10, 2.37) are already too huge for break_eternity.js!
|
|
// https://en.wikipedia.org/wiki/Pentation
|
|
Decimal.prototype.pentate = function(height = 2, payload = FC_NN(1, 0, 1)) {
|
|
payload = D(payload);
|
|
var oldheight = height;
|
|
height = Math.trunc(height);
|
|
var fracheight = oldheight-height;
|
|
|
|
//I have no idea if this is a meaningful approximation for pentation to continuous heights, but it is monotonic and continuous.
|
|
if (fracheight !== 0)
|
|
{
|
|
if (payload.eq(Decimal.dOne))
|
|
{
|
|
++height;
|
|
payload = new Decimal(fracheight);
|
|
}
|
|
else
|
|
{
|
|
if (this.eq(10))
|
|
{
|
|
payload = payload.layeradd10(fracheight);
|
|
}
|
|
else
|
|
{
|
|
payload = payload.layeradd(fracheight, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < height; ++i)
|
|
{
|
|
payload = this.tetrate(payload);
|
|
//bail if we're NaN
|
|
if (!isFinite(payload.layer) || !isFinite(payload.mag)) { return payload; }
|
|
//give up after 10 iterations if nothing is happening
|
|
if (i > 10) { return payload; }
|
|
}
|
|
|
|
return payload;
|
|
}
|
|
|
|
// trig functions!
|
|
Decimal.prototype.sin = function () {
|
|
if (this.mag < 0) { return this; }
|
|
if (this.layer === 0) { return D(Math.sin(this.sign*this.mag)); }
|
|
return FC_NN(0, 0, 0);
|
|
};
|
|
|
|
Decimal.prototype.cos = function () {
|
|
if (this.mag < 0) { return Decimal.dOne; }
|
|
if (this.layer === 0) { return D(Math.cos(this.sign*this.mag)); }
|
|
return FC_NN(0, 0, 0);
|
|
};
|
|
|
|
Decimal.prototype.tan = function () {
|
|
if (this.mag < 0) { return this; }
|
|
if (this.layer === 0) { return D(Math.tan(this.sign*this.mag)); }
|
|
return FC_NN(0, 0, 0);
|
|
};
|
|
|
|
Decimal.prototype.asin = function () {
|
|
if (this.mag < 0) { return this; }
|
|
if (this.layer === 0) { return D(Math.asin(this.sign*this.mag)); }
|
|
return FC_NN(Number.NaN, Number.NaN, Number.NaN);
|
|
};
|
|
|
|
Decimal.prototype.acos = function () {
|
|
if (this.mag < 0) { return D(Math.acos(this.toNumber())); }
|
|
if (this.layer === 0) { return D(Math.acos(this.sign*this.mag)); }
|
|
return FC_NN(Number.NaN, Number.NaN, Number.NaN);
|
|
};
|
|
|
|
Decimal.prototype.atan = function () {
|
|
if (this.mag < 0) { return this; }
|
|
if (this.layer === 0) { return D(Math.atan(this.sign*this.mag)); }
|
|
return D(Math.atan(this.sign*1.8e308));
|
|
};
|
|
|
|
Decimal.prototype.sinh = function () {
|
|
return this.exp().sub(this.negate().exp()).div(2);
|
|
};
|
|
|
|
Decimal.prototype.cosh = function () {
|
|
return this.exp().add(this.negate().exp()).div(2);
|
|
};
|
|
|
|
Decimal.prototype.tanh = function () {
|
|
return this.sinh().div(this.cosh());
|
|
};
|
|
|
|
Decimal.prototype.asinh = function () {
|
|
return Decimal.ln(this.add(this.sqr().add(1).sqrt()));
|
|
};
|
|
|
|
Decimal.prototype.acosh = function () {
|
|
return Decimal.ln(this.add(this.sqr().sub(1).sqrt()));
|
|
};
|
|
|
|
Decimal.prototype.atanh = function () {
|
|
if (this.abs().gte(1)) {
|
|
return FC_NN(Number.NaN, Number.NaN, Number.NaN);
|
|
}
|
|
|
|
return Decimal.ln(this.add(1).div(D(1).sub(this))).div(2);
|
|
};
|
|
|
|
/**
|
|
* Joke function from Realm Grinder
|
|
*/
|
|
Decimal.prototype.ascensionPenalty = function (ascensions) {
|
|
if (ascensions === 0) {
|
|
return this;
|
|
}
|
|
|
|
return this.root(Decimal.pow(10, ascensions));
|
|
};
|
|
|
|
/**
|
|
* Joke function from Cookie Clicker. It's 'egg'
|
|
*/
|
|
Decimal.prototype.egg = function () {
|
|
return this.add(9);
|
|
};
|
|
|
|
Decimal.prototype.lessThanOrEqualTo = function (other) {
|
|
return this.cmp(other) < 1;
|
|
};
|
|
|
|
Decimal.prototype.lessThan = function (other) {
|
|
return this.cmp(other) < 0;
|
|
};
|
|
|
|
Decimal.prototype.greaterThanOrEqualTo = function (other) {
|
|
return this.cmp(other) > -1;
|
|
};
|
|
|
|
Decimal.prototype.greaterThan = function (other) {
|
|
return this.cmp(other) > 0;
|
|
};
|
|
|
|
return Decimal;
|
|
}();
|
|
|
|
Decimal.dZero = FC_NN(0, 0, 0);
|
|
Decimal.dOne = FC_NN(1, 0, 1);
|
|
Decimal.dNegOne = FC_NN(-1, 0, 1);
|
|
Decimal.dTwo = FC_NN(1, 0, 2);
|
|
Decimal.dTen = FC_NN(1, 0, 10);
|
|
Decimal.dNaN = FC_NN(Number.NaN, Number.NaN, Number.NaN);
|
|
Decimal.dInf = FC_NN(1, Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY);
|
|
Decimal.dNegInf = FC_NN(-1, Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY);
|
|
Decimal.dNumberMax = FC(1, 0, Number.MAX_VALUE);
|
|
Decimal.dNumberMin = FC(1, 0, Number.MIN_VALUE);
|
|
|
|
return Decimal;
|
|
|
|
})); |