Profectus-Demo/src/features/conversion.ts

529 lines
22 KiB
TypeScript

import type { OptionsFunc, Replace } from "features/feature";
import { setDefault } from "features/feature";
import type { Resource } from "features/resources/resource";
import type { BaseLayer } from "game/layers";
import type { Modifier } from "game/modifiers";
import type { DecimalSource } from "util/bignum";
import Decimal from "util/bignum";
import type { WithRequired } from "util/common";
import type { Computable, GetComputableTypeWithDefault, ProcessedComputable } from "util/computed";
import { convertComputable, processComputable } from "util/computed";
import { createLazyProxy } from "util/proxies";
import type { Ref } from "vue";
import { computed, unref } from "vue";
/** An object that configures a {@link Conversion}. */
export interface ConversionOptions {
/**
* The scaling function that is used to determine the rate of conversion from one {@link features/resources/resource.Resource} to the other.
*/
scaling: ScalingFunction;
/**
* How much of the output resource the conversion can currently convert for.
* Typically this will be set for you in a conversion constructor.
*/
currentGain?: Computable<DecimalSource>;
/**
* The absolute amount the output resource will be changed by.
* Typically this will be set for you in a conversion constructor.
* This will differ from {@link currentGain} in the cases where the conversion isn't just adding the converted amount to the output resource.
*/
actualGain?: Computable<DecimalSource>;
/**
* The amount of the input resource currently being required in order to produce the {@link currentGain}.
* That is, if it went below this value then {@link currentGain} would decrease.
* Typically this will be set for you in a conversion constructor.
*/
currentAt?: Computable<DecimalSource>;
/**
* The amount of the input resource required to make {@link currentGain} increase.
* Typically this will be set for you in a conversion constructor.
*/
nextAt?: Computable<DecimalSource>;
/**
* The input {@link features/resources/resource.Resource} for this conversion.
*/
baseResource: Resource;
/**
* The output {@link features/resources/resource.Resource} for this conversion. i.e. the resource being generated.
*/
gainResource: Resource;
/**
* Whether or not to cap the amount of the output resource gained by converting at 1.
* Defaults to true.
*/
buyMax?: Computable<boolean>;
/**
* Whether or not to round up the cost to generate a given amount of the output resource.
*/
roundUpCost?: Computable<boolean>;
/**
* The function that performs the actual conversion from {@link baseResource} to {@link gainResource}.
* Typically this will be set for you in a conversion constructor.
*/
convert?: VoidFunction;
/**
* The function that spends the {@link baseResource} as part of the conversion.
* Defaults to setting the {@link baseResource} amount to 0.
*/
spend?: (amountGained: DecimalSource) => void;
/**
* A callback that happens after a conversion has been completed.
* Receives the amount gained via conversion.
* This will not be called whenever using currentGain without calling convert (e.g. passive generation)
*/
onConvert?: (amountGained: DecimalSource) => void;
/**
* An additional modifier that will be applied to the gain amounts.
* Must be reversible in order to correctly calculate {@link nextAt}.
* @see {@link game/modifiers.createSequentialModifier} if you want to apply multiple modifiers.
*/
gainModifier?: WithRequired<Modifier, "revert">;
/**
* A modifier that will be applied to the cost amounts.
* That is to say, this modifier will be applied to the amount of baseResource before going into the scaling function.
* A cost modifier of x0.5 would give gain amounts equal to the player having half the baseResource they actually have.
* Must be reversible in order to correctly calculate {@link nextAt}.
* @see {@link game/modifiers.createSequentialModifier} if you want to apply multiple modifiers.
*/
costModifier?: WithRequired<Modifier, "revert">;
}
/**
* The properties that are added onto a processed {@link ConversionOptions} to create a {@link Conversion}.
*/
export interface BaseConversion {
/**
* The function that performs the actual conversion.
*/
convert: VoidFunction;
}
/** An object that converts one {@link features/resources/resource.Resource} into another at a given rate. */
export type Conversion<T extends ConversionOptions> = Replace<
T & BaseConversion,
{
currentGain: GetComputableTypeWithDefault<T["currentGain"], Ref<DecimalSource>>;
actualGain: GetComputableTypeWithDefault<T["actualGain"], Ref<DecimalSource>>;
currentAt: GetComputableTypeWithDefault<T["currentAt"], Ref<DecimalSource>>;
nextAt: GetComputableTypeWithDefault<T["nextAt"], Ref<DecimalSource>>;
buyMax: GetComputableTypeWithDefault<T["buyMax"], true>;
spend: undefined extends T["spend"] ? (amountGained: DecimalSource) => void : T["spend"];
roundUpCost: GetComputableTypeWithDefault<T["roundUpCost"], true>;
}
>;
/** A type that matches any valid {@link Conversion} object. */
export type GenericConversion = Replace<
Conversion<ConversionOptions>,
{
currentGain: ProcessedComputable<DecimalSource>;
actualGain: ProcessedComputable<DecimalSource>;
currentAt: ProcessedComputable<DecimalSource>;
nextAt: ProcessedComputable<DecimalSource>;
buyMax: ProcessedComputable<boolean>;
spend: (amountGained: DecimalSource) => void;
roundUpCost: ProcessedComputable<boolean>;
}
>;
/**
* Lazily creates a conversion with the given options.
* You typically shouldn't use this function directly. Instead use one of the other conversion constructors, which will then call this.
* @param optionsFunc Conversion options.
* @see {@link createCumulativeConversion}.
* @see {@link createIndependentConversion}.
*/
export function createConversion<T extends ConversionOptions>(
optionsFunc: OptionsFunc<T, BaseConversion, GenericConversion>
): Conversion<T> {
return createLazyProxy(() => {
const conversion = optionsFunc();
if (conversion.currentGain == null) {
conversion.currentGain = computed(() => {
let gain = conversion.gainModifier
? conversion.gainModifier.apply(
conversion.scaling.currentGain(conversion as GenericConversion)
)
: conversion.scaling.currentGain(conversion as GenericConversion);
gain = Decimal.floor(gain).max(0);
if (!unref(conversion.buyMax)) {
gain = gain.min(1);
}
return gain;
});
}
if (conversion.actualGain == null) {
conversion.actualGain = conversion.currentGain;
}
if (conversion.currentAt == null) {
conversion.currentAt = computed(() => {
let current = conversion.scaling.currentAt(conversion as GenericConversion);
if (conversion.roundUpCost) current = Decimal.ceil(current);
return current;
});
}
if (conversion.nextAt == null) {
conversion.nextAt = computed(() => {
let next = conversion.scaling.nextAt(conversion as GenericConversion);
if (conversion.roundUpCost) next = Decimal.ceil(next);
return next;
});
}
if (conversion.convert == null) {
conversion.convert = function () {
const amountGained = unref((conversion as GenericConversion).currentGain);
conversion.gainResource.value = Decimal.add(
conversion.gainResource.value,
amountGained
);
(conversion as GenericConversion).spend(amountGained);
conversion.onConvert?.(amountGained);
};
}
if (conversion.spend == null) {
conversion.spend = function () {
conversion.baseResource.value = 0;
};
}
processComputable(conversion as T, "currentGain");
processComputable(conversion as T, "actualGain");
processComputable(conversion as T, "currentAt");
processComputable(conversion as T, "nextAt");
processComputable(conversion as T, "buyMax");
setDefault(conversion, "buyMax", true);
processComputable(conversion as T, "roundUpCost");
setDefault(conversion, "roundUpCost", true);
return conversion as unknown as Conversion<T>;
});
}
/**
* A collection of functions that allow a conversion to scale the amount of resources gained based on the input resource.
* This typically shouldn't be created directly. Instead use one of the scaling function constructors.
* @see {@link createLinearScaling}.
* @see {@link createPolynomialScaling}.
*/
export interface ScalingFunction {
/**
* Calculates the amount of the output resource a conversion should be able to currently produce.
* This should be based off of `conversion.baseResource.value`.
* The conversion is responsible for applying the gainModifier, so this function should be un-modified.
* It does not need to be clamped or rounded.
*/
currentGain: (conversion: GenericConversion) => DecimalSource;
/**
* Calculates the amount of the input resource that is required for the current value of `conversion.currentGain`.
* Note that `conversion.currentGain` has been modified by `conversion.gainModifier`, so you will need to revert that as appropriate.
* The conversion is responsible for rounding up the amount as appropriate.
* The returned value should not be below 0.
*/
currentAt: (conversion: GenericConversion) => DecimalSource;
/**
* Calculates the amount of the input resource that would be required for the current value of `conversion.currentGain` to increase.
* Note that `conversion.currentGain` has been modified by `conversion.gainModifier`, so you will need to revert that as appropriate.
* The conversion is responsible for rounding up the amount as appropriate.
* The returned value should not be below 0.
*/
nextAt: (conversion: GenericConversion) => DecimalSource;
}
/**
* Creates a scaling function based off the formula `(baseResource - base) * coefficient`.
* If the baseResource value is less than base then the currentGain will be 0.
* @param base The base variable in the scaling formula.
* @param coefficient The coefficient variable in the scaling formula.
* @example
* A scaling function created via `createLinearScaling(10, 0.5)` would produce the following values:
* | Base Resource | Current Gain |
* | ------------- | ------------ |
* | 10 | 1 |
* | 12 | 2 |
* | 20 | 6 |
*/
export function createLinearScaling(
base: Computable<DecimalSource>,
coefficient: Computable<DecimalSource>
): ScalingFunction {
const processedBase = convertComputable(base);
const processedCoefficient = convertComputable(coefficient);
return {
currentGain(conversion) {
let baseAmount: DecimalSource = unref(conversion.baseResource.value);
if (conversion.costModifier) {
baseAmount = conversion.costModifier.apply(baseAmount);
}
if (Decimal.lt(baseAmount, unref(processedBase))) {
return 0;
}
return Decimal.sub(baseAmount, unref(processedBase))
.sub(1)
.times(unref(processedCoefficient))
.add(1);
},
currentAt(conversion) {
let current: DecimalSource = unref(conversion.currentGain);
if (conversion.gainModifier) {
current = conversion.gainModifier.revert(current);
}
current = Decimal.max(0, current)
.sub(1)
.div(unref(processedCoefficient))
.add(unref(processedBase));
if (conversion.costModifier) {
current = conversion.costModifier.revert(current);
}
return current;
},
nextAt(conversion) {
let next: DecimalSource = Decimal.add(unref(conversion.currentGain), 1).floor();
if (conversion.gainModifier) {
next = conversion.gainModifier.revert(next);
}
next = Decimal.max(0, next)
.sub(1)
.div(unref(processedCoefficient))
.add(unref(processedBase))
.max(unref(processedBase));
if (conversion.costModifier) {
next = conversion.costModifier.revert(next);
}
return next;
}
};
}
/**
* Creates a scaling function based off the formula `(baseResource / base) ^ exponent`.
* If the baseResource value is less than base then the currentGain will be 0.
* @param base The base variable in the scaling formula.
* @param exponent The exponent variable in the scaling formula.
* @example
* A scaling function created via `createPolynomialScaling(10, 0.5)` would produce the following values:
* | Base Resource | Current Gain |
* | ------------- | ------------ |
* | 10 | 1 |
* | 40 | 2 |
* | 250 | 5 |
*/
export function createPolynomialScaling(
base: Computable<DecimalSource>,
exponent: Computable<DecimalSource>
): ScalingFunction {
const processedBase = convertComputable(base);
const processedExponent = convertComputable(exponent);
return {
currentGain(conversion) {
let baseAmount: DecimalSource = unref(conversion.baseResource.value);
if (conversion.costModifier) {
baseAmount = conversion.costModifier.apply(baseAmount);
}
if (Decimal.lt(baseAmount, unref(processedBase))) {
return 0;
}
const gain = Decimal.div(baseAmount, unref(processedBase)).pow(
unref(processedExponent)
);
if (gain.isNan()) {
return new Decimal(0);
}
return gain;
},
currentAt(conversion) {
let current: DecimalSource = unref(conversion.currentGain);
if (conversion.gainModifier) {
current = conversion.gainModifier.revert(current);
}
current = Decimal.max(0, current)
.root(unref(processedExponent))
.times(unref(processedBase));
if (conversion.costModifier) {
current = conversion.costModifier.revert(current);
}
return current;
},
nextAt(conversion) {
let next: DecimalSource = Decimal.add(unref(conversion.currentGain), 1).floor();
if (conversion.gainModifier) {
next = conversion.gainModifier.revert(next);
}
next = Decimal.max(0, next)
.root(unref(processedExponent))
.times(unref(processedBase))
.max(unref(processedBase));
if (conversion.costModifier) {
next = conversion.costModifier.revert(next);
}
return next;
}
};
}
/**
* Creates a conversion that simply adds to the gainResource amount upon converting.
* This is similar to the behavior of "normal" layers in The Modding Tree.
* This is equivalent to just calling createConversion directly.
* @param optionsFunc Conversion options.
*/
export function createCumulativeConversion<S extends ConversionOptions>(
optionsFunc: OptionsFunc<S, BaseConversion, GenericConversion>
): Conversion<S> {
return createConversion(optionsFunc);
}
/**
* Creates a conversion that will replace the gainResource amount with the new amount upon converting.
* This is similar to the behavior of "static" layers in The Modding Tree.
* @param optionsFunc Converison options.
*/
export function createIndependentConversion<S extends ConversionOptions>(
optionsFunc: OptionsFunc<S, BaseConversion, GenericConversion>
): Conversion<S> {
return createConversion(() => {
const conversion: S = optionsFunc();
setDefault(conversion, "buyMax", false);
if (conversion.currentGain == null) {
conversion.currentGain = computed(() => {
let gain = conversion.gainModifier
? conversion.gainModifier.apply(
conversion.scaling.currentGain(conversion as GenericConversion)
)
: conversion.scaling.currentGain(conversion as GenericConversion);
gain = Decimal.floor(gain).max(conversion.gainResource.value);
if (!unref(conversion.buyMax)) {
gain = gain.min(Decimal.add(conversion.gainResource.value, 1));
}
return gain;
});
}
if (conversion.actualGain == null) {
conversion.actualGain = computed(() => {
let gain = Decimal.sub(
Decimal.floor(conversion.scaling.currentGain(conversion as GenericConversion)),
conversion.gainResource.value
).max(0);
if (!unref(conversion.buyMax)) {
gain = gain.min(1);
}
return gain;
});
}
setDefault(conversion, "convert", function () {
const amountGained = unref((conversion as GenericConversion).actualGain);
conversion.gainResource.value = conversion.gainModifier
? conversion.gainModifier.apply(
unref((conversion as GenericConversion).currentGain)
)
: unref((conversion as GenericConversion).currentGain);
(conversion as GenericConversion).spend(amountGained);
conversion.onConvert?.(amountGained);
});
return conversion;
}) as Conversion<S>;
}
/**
* This will automatically increase the value of conversion.gainResource without lowering the value of the input resource.
* It will by default perform 100% of a conversion's currentGain per second.
* If you use a ref for the rate you can set it's value to 0 when passive generation should be disabled.
* @param layer The layer this passive generation will be associated with. Typically `this` when calling this function from inside a layer's options function.
* @param conversion The conversion that will determine how much generation there is.
* @param rate A multiplier to multiply against the conversion's currentGain.
* @param cap A value that should not be passed via passive generation. If null, no cap is applied.
*/
export function setupPassiveGeneration(
layer: BaseLayer,
conversion: GenericConversion,
rate: Computable<DecimalSource> = 1,
cap: Computable<DecimalSource | null> = null
): void {
const processedRate = convertComputable(rate);
const processedCap = convertComputable(cap);
layer.on("preUpdate", diff => {
const currRate = unref(processedRate);
if (Decimal.neq(currRate, 0)) {
conversion.gainResource.value = Decimal.add(
conversion.gainResource.value,
Decimal.times(currRate, diff).times(Decimal.ceil(unref(conversion.actualGain)))
).min(unref(processedCap) ?? Decimal.dInf);
}
});
}
/**
* Given a value, this function finds the amount above a certain value and raises it to a power.
* If the power is <1, this will effectively make the value scale slower after the cap.
* @param value The raw value.
* @param cap The value after which the softcap should be applied.
* @param power The power to raise value above the cap to.
* @example
* A softcap added via `addSoftcap(scaling, 100, 0.5)` would produce the following values:
* | Raw Value | Softcapped Value |
* | --------- | ---------------- |
* | 1 | 1 |
* | 100 | 100 |
* | 125 | 105 |
* | 200 | 110 |
*/
export function softcap(
value: DecimalSource,
cap: DecimalSource,
power: DecimalSource = 0.5
): DecimalSource {
if (Decimal.lte(value, cap)) {
return value;
} else {
return Decimal.pow(value, power).times(Decimal.pow(cap, Decimal.sub(1, power)));
}
}
/**
* Creates a scaling function based off an existing scaling function, with a softcap applied to it.
* The softcap will take any value above a certain value and raise it to a power.
* If the power is <1, this will effectively make the value scale slower after the cap.
* @param scaling The raw scaling function.
* @param cap The value after which the softcap should be applied.
* @param power The power to raise value about the cap to.
* @see {@link softcap}.
*/
export function addSoftcap(
scaling: ScalingFunction,
cap: ProcessedComputable<DecimalSource>,
power: ProcessedComputable<DecimalSource> = 0.5
): ScalingFunction {
return {
...scaling,
currentGain: conversion =>
softcap(scaling.currentGain(conversion), unref(cap), unref(power))
};
}
/**
* Creates a scaling function off an existing function, with a hardcap applied to it.
* The harcap will ensure that the currentGain will stop at a given cap.
* @param scaling The raw scaling function.
* @param cap The maximum value the scaling function can output.
*/
export function addHardcap(
scaling: ScalingFunction,
cap: ProcessedComputable<DecimalSource>
): ScalingFunction {
return {
...scaling,
currentGain: conversion => Decimal.min(scaling.currentGain(conversion), unref(cap))
};
}