Profectus-Demo/src/lib/break_eternity.ts

2987 lines
99 KiB
TypeScript

/* eslint-disable @typescript-eslint/no-this-alias */
/* eslint-disable @typescript-eslint/no-loss-of-precision */
import { LRUCache } from "../lib/lru-cache";
export type CompareResult = -1 | 0 | 1;
const MAX_SIGNIFICANT_DIGITS = 17; //Maximum number of digits of precision to assume in Number
const EXP_LIMIT = 9e15; //If we're ABOVE this value, increase a layer. (9e15 is close to the largest integer that can fit in a Number.)
const LAYER_DOWN: number = Math.log10(9e15);
const FIRST_NEG_LAYER = 1 / 9e15; //At layer 0, smaller non-zero numbers than this become layer 1 numbers with negative mag. After that the pattern continues as normal.
const NUMBER_EXP_MAX = 308; //The largest exponent that can appear in a Number, though not all mantissas are valid here.
const NUMBER_EXP_MIN = -324; //The smallest exponent that can appear in a Number, though not all mantissas are valid here.
const MAX_ES_IN_A_ROW = 5; //For default toString behaviour, when to swap from eee... to (e^n) syntax.
const DEFAULT_FROM_STRING_CACHE_SIZE = (1 << 10) - 1; // The default size of the LRU cache used to cache Decimal.fromString.
const IGNORE_COMMAS = true;
const COMMAS_ARE_DECIMAL_POINTS = false;
const powerOf10 = (function () {
// We need this lookup table because Math.pow(10, exponent)
// when exponent's absolute value is large is slightly inaccurate.
// You can fix it with the power of math... or just make a lookup table.
// Faster AND simpler
const powersOf10: number[] = [];
for (let i = NUMBER_EXP_MIN + 1; i <= NUMBER_EXP_MAX; i++) {
powersOf10.push(Number("1e" + i));
}
const indexOf0InPowersOf10 = 323;
return function (power: number) {
return powersOf10[power + indexOf0InPowersOf10];
};
})();
//tetration/slog to real height stuff
//background info and tables of values for critical functions taken here: https://github.com/Patashu/break_eternity.js/issues/22
const critical_headers = [2, Math.E, 3, 4, 5, 6, 7, 8, 9, 10];
const critical_tetr_values = [
[
// Base 2 (using http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html )
1, 1.0891180521811202527, 1.1789767925673958433, 1.2701455431742086633,
1.3632090180450091941, 1.4587818160364217007, 1.5575237916251418333, 1.6601571006859253673,
1.7674858188369780435, 1.8804192098842727359, 2
],
[
// Base E (using http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html )
1, //0.0
1.1121114330934078681, //0.1
1.2310389249316089299, //0.2
1.3583836963111376089, //0.3
1.4960519303993531879, //0.4
1.646354233751194581, //0.5
1.8121385357018724464, //0.6
1.9969713246183068478, //0.7
2.205389554552754433, //0.8
2.4432574483385252544, //0.9
Math.E //1.0
],
[
// Base 3
1, 1.1187738849693603, 1.2464963939368214, 1.38527004705667, 1.5376664685821402,
1.7068895236551784, 1.897001227148399, 2.1132403089001035, 2.362480153784171,
2.6539010333870774, 3
],
[
// Base 4
1, 1.1367350847096405, 1.2889510672956703, 1.4606478703324786, 1.6570295196661111,
1.8850062585672889, 2.1539465047453485, 2.476829779693097, 2.872061932789197,
3.3664204535587183, 4
],
[
// Base 5
1, 1.1494592900767588, 1.319708228183931, 1.5166291280087583, 1.748171114438024,
2.0253263297298045, 2.3636668498288547, 2.7858359149579424, 3.3257226212448145,
4.035730287722532, 5
],
[
// Base 6
1, 1.159225940787673, 1.343712473580932, 1.5611293155111927, 1.8221199554561318,
2.14183924486326, 2.542468319282638, 3.0574682501653316, 3.7390572020926873,
4.6719550537360774, 6
],
[
// Base 7
1, 1.1670905356972596, 1.3632807444991446, 1.5979222279405536, 1.8842640123816674,
2.2416069644878687, 2.69893426559423, 3.3012632110403577, 4.121250340630164,
5.281493033448316, 7
],
[
// Base 8
1, 1.1736630594087796, 1.379783782386201, 1.6292821855668218, 1.9378971836180754,
2.3289975651071977, 2.8384347394720835, 3.5232708454565906, 4.478242031114584,
5.868592169644505, 8
],
[
// Base 9
1, 1.1793017514670474, 1.394054150657457, 1.65664127441059, 1.985170999970283,
2.4069682290577457, 2.9647310119960752, 3.7278665320924946, 4.814462547283592,
6.436522247411611, 9
],
[
// Base 10 (using http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html )
1, 1.1840100246247336579, 1.4061375836156954169, 1.6802272208863963918,
2.026757028388618927, 2.477005606344964758, 3.0805252717554819987, 3.9191964192627283911,
5.135152840833186423, 6.9899611795347148455, 10
]
];
const critical_slog_values = [
[
// Base 2
-1, -0.9194161097107025, -0.8335625019330468, -0.7425599821143978, -0.6466611521029437,
-0.5462617907227869, -0.4419033816638769, -0.3342645487554494, -0.224140440909962,
-0.11241087890006762, 0
],
[
// Base E
-1, //0.0
-0.90603157029014, //0.1
-0.80786507256596, //0.2
-0.7064666939634, //0.3
-0.60294836853664, //0.4
-0.49849837513117, //0.5
-0.39430303318768, //0.6
-0.29147201034755, //0.7
-0.19097820800866, //0.8
-0.09361896280296, //0.9
0 //1.0
],
[
// Base 3
-1, -0.9021579584316141, -0.8005762598234203, -0.6964780623319391, -0.5911906810998454,
-0.486050182576545, -0.3823089430815083, -0.28106046722897615, -0.1831906535795894,
-0.08935809204418144, 0
],
[
// Base 4
-1, -0.8917227442365535, -0.781258746326964, -0.6705130326902455, -0.5612813129406509,
-0.4551067709033134, -0.35319256652135966, -0.2563741554088552, -0.1651412821106526,
-0.0796919581982668, 0
],
[
// Base 5
-1, -0.8843387974366064, -0.7678744063886243, -0.6529563724510552, -0.5415870994657841,
-0.4352842206588936, -0.33504449124791424, -0.24138853420685147, -0.15445285440944467,
-0.07409659641336663, 0
],
[
// Base 6
-1, -0.8786709358426346, -0.7577735191184886, -0.6399546189952064, -0.527284921869926,
-0.4211627631006314, -0.3223479611761232, -0.23107655627789858, -0.1472057700818259,
-0.07035171210706326, 0
],
[
// Base 7
-1, -0.8740862815291583, -0.7497032990976209, -0.6297119746181752, -0.5161838335958787,
-0.41036238255751956, -0.31277212146489963, -0.2233976621705518, -0.1418697367979619,
-0.06762117662323441, 0
],
[
// Base 8
-1, -0.8702632331800649, -0.7430366914122081, -0.6213373075161548, -0.5072025698095242,
-0.40171437727184167, -0.30517930701410456, -0.21736343968190863, -0.137710238299109,
-0.06550774483471955, 0
],
[
// Base 9
-1, -0.8670016295947213, -0.7373984232432306, -0.6143173985094293, -0.49973884395492807,
-0.394584953527678, -0.2989649949848695, -0.21245647317021688, -0.13434688362382652,
-0.0638072667348083, 0
],
[
// Base 10
-1, -0.8641642839543857, -0.732534623168535, -0.6083127477059322, -0.4934049257184696,
-0.3885773075899922, -0.29376029055315767, -0.2083678561173622, -0.13155653399373268,
-0.062401588652553186, 0
]
];
let D = function D(value: DecimalSource): Readonly<Decimal> {
return Decimal.fromValue_noAlloc(value);
};
let FC = function (sign: number, layer: number, mag: number) {
return Decimal.fromComponents(sign, layer, mag);
};
let FC_NN = function FC_NN(sign: number, layer: number, mag: number) {
return Decimal.fromComponents_noNormalize(sign, layer, mag);
};
// eslint-disable-next-line @typescript-eslint/no-unused-vars
let ME = function ME(mantissa: number, exponent: number) {
return Decimal.fromMantissaExponent(mantissa, exponent);
};
// eslint-disable-next-line @typescript-eslint/no-unused-vars
let ME_NN = function ME_NN(mantissa: number, exponent: number) {
return Decimal.fromMantissaExponent_noNormalize(mantissa, exponent);
};
const decimalPlaces = function decimalPlaces(value: number, places: number): number {
const len = places + 1;
const numDigits = Math.ceil(Math.log10(Math.abs(value)));
const rounded =
Math.round(value * Math.pow(10, len - numDigits)) * Math.pow(10, numDigits - len);
return parseFloat(rounded.toFixed(Math.max(len - numDigits, 0)));
};
const f_maglog10 = function (n: number) {
return Math.sign(n) * Math.log10(Math.abs(n));
};
//from HyperCalc source code
const f_gamma = function (n: number) {
if (!isFinite(n)) {
return n;
}
if (n < -50) {
if (n === Math.trunc(n)) {
return Number.NEGATIVE_INFINITY;
}
return 0;
}
let scal1 = 1;
while (n < 10) {
scal1 = scal1 * n;
++n;
}
n -= 1;
let l = 0.9189385332046727; //0.5*Math.log(2*Math.PI)
l = l + (n + 0.5) * Math.log(n);
l = l - n;
const n2 = n * n;
let np = n;
l = l + 1 / (12 * np);
np = np * n2;
l = l + 1 / (360 * np);
np = np * n2;
l = l + 1 / (1260 * np);
np = np * n2;
l = l + 1 / (1680 * np);
np = np * n2;
l = l + 1 / (1188 * np);
np = np * n2;
l = l + 691 / (360360 * np);
np = np * n2;
l = l + 7 / (1092 * np);
np = np * n2;
l = l + 3617 / (122400 * np);
return Math.exp(l) / scal1;
};
const _twopi = 6.2831853071795864769252842; // 2*pi
const _EXPN1 = 0.36787944117144232159553; // exp(-1)
const OMEGA = 0.56714329040978387299997; // W(1, 0)
//from https://math.stackexchange.com/a/465183
// The evaluation can become inaccurate very close to the branch point
const f_lambertw = function (z: number, tol = 1e-10): number {
let w;
let wn;
if (!Number.isFinite(z)) {
return z;
}
if (z === 0) {
return z;
}
if (z === 1) {
return OMEGA;
}
if (z < 10) {
w = 0;
} else {
w = Math.log(z) - Math.log(Math.log(z));
}
for (let i = 0; i < 100; ++i) {
wn = (z * Math.exp(-w) + w * w) / (w + 1);
if (Math.abs(wn - w) < tol * Math.abs(wn)) {
return wn;
} else {
w = wn;
}
}
throw Error(`Iteration failed to converge: ${z.toString()}`);
//return Number.NaN;
};
//from https://github.com/scipy/scipy/blob/8dba340293fe20e62e173bdf2c10ae208286692f/scipy/special/lambertw.pxd
// The evaluation can become inaccurate very close to the branch point
// at ``-1/e``. In some corner cases, `lambertw` might currently
// fail to converge, or can end up on the wrong branch.
function d_lambertw(z: Decimal, tol = 1e-10): Decimal {
let w;
let ew, wewz, wn;
if (!Number.isFinite(z.mag)) {
return z;
}
if (z.eq(Decimal.dZero)) {
return z;
}
if (z.eq(Decimal.dOne)) {
//Split out this case because the asymptotic series blows up
return Decimal.fromNumber(OMEGA);
}
//Get an initial guess for Halley's method
w = Decimal.ln(z);
//Halley's method; see 5.9 in [1]
for (let i = 0; i < 100; ++i) {
ew = w.neg().exp();
wewz = w.sub(z.mul(ew));
wn = w.sub(wewz.div(w.add(1).sub(w.add(2).mul(wewz).div(Decimal.mul(2, w).add(2)))));
if (Decimal.abs(wn.sub(w)).lt(Decimal.abs(wn).mul(tol))) {
return wn;
} else {
w = wn;
}
}
throw Error(`Iteration failed to converge: ${z.toString()}`);
//return Decimal.dNaN;
}
export type DecimalSource = Decimal | number | string;
/**
* The Decimal's value is simply mantissa * 10^exponent.
*/
export default class Decimal {
public static dZero: Decimal;
public static dOne: Decimal;
public static dNegOne: Decimal;
public static dTwo: Decimal;
public static dTen: Decimal;
public static dNaN: Decimal;
public static dInf: Decimal;
public static dNegInf: Decimal;
public static dNumberMax: Decimal;
public static dNumberMin: Decimal;
private static fromStringCache = new LRUCache<string, Decimal>(DEFAULT_FROM_STRING_CACHE_SIZE);
public sign = 0;
public mag = 0;
public layer = 0;
constructor(value?: DecimalSource) {
if (value instanceof Decimal) {
this.fromDecimal(value);
} else if (typeof value === "number") {
this.fromNumber(value);
} else if (typeof value === "string") {
this.fromString(value);
}
}
get m(): number {
if (this.sign === 0) {
return 0;
} else if (this.layer === 0) {
const exp = Math.floor(Math.log10(this.mag));
//handle special case 5e-324
let man;
if (this.mag === 5e-324) {
man = 5;
} else {
man = this.mag / powerOf10(exp);
}
return this.sign * man;
} else if (this.layer === 1) {
const residue = this.mag - Math.floor(this.mag);
return this.sign * Math.pow(10, residue);
} else {
//mantissa stops being relevant past 1e9e15 / ee15.954
return this.sign;
}
}
set m(value: number) {
if (this.layer <= 2) {
this.fromMantissaExponent(value, this.e);
} else {
//don't even pretend mantissa is meaningful
this.sign = Math.sign(value);
if (this.sign === 0) {
this.layer = 0;
this.exponent = 0;
}
}
}
get e(): number {
if (this.sign === 0) {
return 0;
} else if (this.layer === 0) {
return Math.floor(Math.log10(this.mag));
} else if (this.layer === 1) {
return Math.floor(this.mag);
} else if (this.layer === 2) {
return Math.floor(Math.sign(this.mag) * Math.pow(10, Math.abs(this.mag)));
} else {
return this.mag * Number.POSITIVE_INFINITY;
}
}
set e(value: number) {
this.fromMantissaExponent(this.m, value);
}
get s(): number {
return this.sign;
}
set s(value: number) {
if (value === 0) {
this.sign = 0;
this.layer = 0;
this.mag = 0;
} else {
this.sign = value;
}
}
// Object.defineProperty(Decimal.prototype, "mantissa", {
get mantissa(): number {
return this.m;
}
set mantissa(value: number) {
this.m = value;
}
get exponent(): number {
return this.e;
}
set exponent(value: number) {
this.e = value;
}
public static fromComponents(sign: number, layer: number, mag: number): Decimal {
return new Decimal().fromComponents(sign, layer, mag);
}
public static fromComponents_noNormalize(sign: number, layer: number, mag: number): Decimal {
return new Decimal().fromComponents_noNormalize(sign, layer, mag);
}
public static fromMantissaExponent(mantissa: number, exponent: number): Decimal {
return new Decimal().fromMantissaExponent(mantissa, exponent);
}
public static fromMantissaExponent_noNormalize(mantissa: number, exponent: number): Decimal {
return new Decimal().fromMantissaExponent_noNormalize(mantissa, exponent);
}
public static fromDecimal(value: Decimal): Decimal {
return new Decimal().fromDecimal(value);
}
public static fromNumber(value: number): Decimal {
return new Decimal().fromNumber(value);
}
public static fromString(value: string): Decimal {
return new Decimal().fromString(value);
}
public static fromValue(value: DecimalSource): Decimal {
return new Decimal().fromValue(value);
}
/**
* Converts a DecimalSource to a Decimal, without constructing a new Decimal
* if the provided value is already a Decimal.
*
* As the return value could be the provided value itself, this function
* returns a read-only Decimal to prevent accidental mutations of the value.
* Use `new Decimal(value)` to explicitly create a writeable copy if mutation
* is required.
*/
public static fromValue_noAlloc(value: DecimalSource): Readonly<Decimal> {
if (value instanceof Decimal) {
return value;
} else if (typeof value === "string") {
const cached = Decimal.fromStringCache.get(value);
if (cached !== undefined) {
return cached;
}
return Decimal.fromString(value);
} else if (typeof value === "number") {
return Decimal.fromNumber(value);
} else {
// This should never happen... but some users like Prestige Tree Rewritten
// pass undefined values in as DecimalSources, so we should handle this
// case to not break them.
return Decimal.dZero;
}
}
public static abs(value: DecimalSource): Decimal {
return D(value).abs();
}
public static neg(value: DecimalSource): Decimal {
return D(value).neg();
}
public static negate(value: DecimalSource): Decimal {
return D(value).neg();
}
public static negated(value: DecimalSource): Decimal {
return D(value).neg();
}
public static sign(value: DecimalSource): number {
return D(value).sign;
}
public static sgn(value: DecimalSource): number {
return D(value).sign;
}
public static round(value: DecimalSource): Decimal {
return D(value).round();
}
public static floor(value: DecimalSource): Decimal {
return D(value).floor();
}
public static ceil(value: DecimalSource): Decimal {
return D(value).ceil();
}
public static trunc(value: DecimalSource): Decimal {
return D(value).trunc();
}
public static add(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).add(other);
}
public static plus(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).add(other);
}
public static sub(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).sub(other);
}
public static subtract(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).sub(other);
}
public static minus(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).sub(other);
}
public static mul(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).mul(other);
}
public static multiply(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).mul(other);
}
public static times(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).mul(other);
}
public static div(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).div(other);
}
public static divide(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).div(other);
}
public static recip(value: DecimalSource): Decimal {
return D(value).recip();
}
public static reciprocal(value: DecimalSource): Decimal {
return D(value).recip();
}
public static reciprocate(value: DecimalSource): Decimal {
return D(value).reciprocate();
}
public static cmp(value: DecimalSource, other: DecimalSource): CompareResult {
return D(value).cmp(other);
}
public static cmpabs(value: DecimalSource, other: DecimalSource): CompareResult {
return D(value).cmpabs(other);
}
public static compare(value: DecimalSource, other: DecimalSource): CompareResult {
return D(value).cmp(other);
}
public static isNaN(value: DecimalSource): boolean {
value = D(value);
return isNaN(value.sign) || isNaN(value.layer) || isNaN(value.mag);
}
public static isFinite(value: DecimalSource): boolean {
value = D(value);
return isFinite(value.sign) && isFinite(value.layer) && isFinite(value.mag);
}
public static eq(value: DecimalSource, other: DecimalSource): boolean {
return D(value).eq(other);
}
public static equals(value: DecimalSource, other: DecimalSource): boolean {
return D(value).eq(other);
}
public static neq(value: DecimalSource, other: DecimalSource): boolean {
return D(value).neq(other);
}
public static notEquals(value: DecimalSource, other: DecimalSource): boolean {
return D(value).notEquals(other);
}
public static lt(value: DecimalSource, other: DecimalSource): boolean {
return D(value).lt(other);
}
public static lte(value: DecimalSource, other: DecimalSource): boolean {
return D(value).lte(other);
}
public static gt(value: DecimalSource, other: DecimalSource): boolean {
return D(value).gt(other);
}
public static gte(value: DecimalSource, other: DecimalSource): boolean {
return D(value).gte(other);
}
public static max(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).max(other);
}
public static min(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).min(other);
}
public static minabs(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).minabs(other);
}
public static maxabs(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).maxabs(other);
}
public static clamp(value: DecimalSource, min: DecimalSource, max: DecimalSource): Decimal {
return D(value).clamp(min, max);
}
public static clampMin(value: DecimalSource, min: DecimalSource): Decimal {
return D(value).clampMin(min);
}
public static clampMax(value: DecimalSource, max: DecimalSource): Decimal {
return D(value).clampMax(max);
}
public static cmp_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): CompareResult {
return D(value).cmp_tolerance(other, tolerance);
}
public static compare_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): CompareResult {
return D(value).cmp_tolerance(other, tolerance);
}
public static eq_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance?: number
): boolean {
return D(value).eq_tolerance(other, tolerance);
}
public static equals_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance?: number
): boolean {
return D(value).eq_tolerance(other, tolerance);
}
public static neq_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): boolean {
return D(value).neq_tolerance(other, tolerance);
}
public static notEquals_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): boolean {
return D(value).notEquals_tolerance(other, tolerance);
}
public static lt_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): boolean {
return D(value).lt_tolerance(other, tolerance);
}
public static lte_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): boolean {
return D(value).lte_tolerance(other, tolerance);
}
public static gt_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): boolean {
return D(value).gt_tolerance(other, tolerance);
}
public static gte_tolerance(
value: DecimalSource,
other: DecimalSource,
tolerance: number
): boolean {
return D(value).gte_tolerance(other, tolerance);
}
public static pLog10(value: DecimalSource): Decimal {
return D(value).pLog10();
}
public static absLog10(value: DecimalSource): Decimal {
return D(value).absLog10();
}
public static log10(value: DecimalSource): Decimal {
return D(value).log10();
}
public static log(value: DecimalSource, base: DecimalSource): Decimal {
return D(value).log(base);
}
public static log2(value: DecimalSource): Decimal {
return D(value).log2();
}
public static ln(value: DecimalSource): Decimal {
return D(value).ln();
}
public static logarithm(value: DecimalSource, base: DecimalSource): Decimal {
return D(value).logarithm(base);
}
public static pow(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).pow(other);
}
public static pow10(value: DecimalSource): Decimal {
return D(value).pow10();
}
public static root(value: DecimalSource, other: DecimalSource): Decimal {
return D(value).root(other);
}
public static factorial(value: DecimalSource, _other?: never): Decimal {
return D(value).factorial();
}
public static gamma(value: DecimalSource, _other?: never): Decimal {
return D(value).gamma();
}
public static lngamma(value: DecimalSource, _other?: never): Decimal {
return D(value).lngamma();
}
public static exp(value: DecimalSource): Decimal {
return D(value).exp();
}
public static sqr(value: DecimalSource): Decimal {
return D(value).sqr();
}
public static sqrt(value: DecimalSource): Decimal {
return D(value).sqrt();
}
public static cube(value: DecimalSource): Decimal {
return D(value).cube();
}
public static cbrt(value: DecimalSource): Decimal {
return D(value).cbrt();
}
public static tetrate(
value: DecimalSource,
height = 2,
payload: DecimalSource = FC_NN(1, 0, 1)
): Decimal {
return D(value).tetrate(height, payload);
}
public static iteratedexp(value: DecimalSource, height = 2, payload = FC_NN(1, 0, 1)): Decimal {
return D(value).iteratedexp(height, payload);
}
public static iteratedlog(value: DecimalSource, base: DecimalSource = 10, times = 1): Decimal {
return D(value).iteratedlog(base, times);
}
public static layeradd10(value: DecimalSource, diff: DecimalSource): Decimal {
return D(value).layeradd10(diff);
}
public static layeradd(value: DecimalSource, diff: number, base: DecimalSource = 10): Decimal {
return D(value).layeradd(diff, base);
}
public static slog(value: DecimalSource, base = 10): Decimal {
return D(value).slog(base);
}
public static lambertw(value: DecimalSource): Decimal {
return D(value).lambertw();
}
public static ssqrt(value: DecimalSource): Decimal {
return D(value).ssqrt();
}
public static pentate(
value: DecimalSource,
height = 2,
payload: DecimalSource = FC_NN(1, 0, 1)
): Decimal {
return D(value).pentate(height, payload);
}
public static sin(value: DecimalSource): Decimal {
return D(value).sin();
}
public static cos(value: DecimalSource): Decimal {
return D(value).cos();
}
public static tan(value: DecimalSource): Decimal {
return D(value).tan();
}
public static asin(value: DecimalSource): Decimal {
return D(value).asin();
}
public static acos(value: DecimalSource): Decimal {
return D(value).acos();
}
public static atan(value: DecimalSource): Decimal {
return D(value).atan();
}
public static sinh(value: DecimalSource): Decimal {
return D(value).sinh();
}
public static cosh(value: DecimalSource): Decimal {
return D(value).cosh();
}
public static tanh(value: DecimalSource): Decimal {
return D(value).tanh();
}
public static asinh(value: DecimalSource): Decimal {
return D(value).asinh();
}
public static acosh(value: DecimalSource): Decimal {
return D(value).acosh();
}
public static atanh(value: DecimalSource): Decimal {
return D(value).atanh();
}
/**
* If you're willing to spend 'resourcesAvailable' and want to buy something
* with exponentially increasing cost each purchase (start at priceStart,
* multiply by priceRatio, already own currentOwned), how much of it can you buy?
* Adapted from Trimps source code.
*/
public static affordGeometricSeries(
resourcesAvailable: DecimalSource,
priceStart: DecimalSource,
priceRatio: DecimalSource,
currentOwned: DecimalSource
): Decimal {
return this.affordGeometricSeries_core(
D(resourcesAvailable),
D(priceStart),
D(priceRatio),
currentOwned
);
}
/**
* How much resource would it cost to buy (numItems) items if you already have currentOwned,
* the initial price is priceStart and it multiplies by priceRatio each purchase?
*/
public static sumGeometricSeries(
numItems: DecimalSource,
priceStart: DecimalSource,
priceRatio: DecimalSource,
currentOwned: DecimalSource
): Decimal {
return this.sumGeometricSeries_core(numItems, D(priceStart), D(priceRatio), currentOwned);
}
/**
* If you're willing to spend 'resourcesAvailable' and want to buy something with additively
* increasing cost each purchase (start at priceStart, add by priceAdd, already own currentOwned),
* how much of it can you buy?
*/
public static affordArithmeticSeries(
resourcesAvailable: DecimalSource,
priceStart: DecimalSource,
priceAdd: DecimalSource,
currentOwned: DecimalSource
): Decimal {
return this.affordArithmeticSeries_core(
D(resourcesAvailable),
D(priceStart),
D(priceAdd),
D(currentOwned)
);
}
/**
* How much resource would it cost to buy (numItems) items if you already have currentOwned,
* the initial price is priceStart and it adds priceAdd each purchase?
* Adapted from http://www.mathwords.com/a/arithmetic_series.htm
*/
public static sumArithmeticSeries(
numItems: DecimalSource,
priceStart: DecimalSource,
priceAdd: DecimalSource,
currentOwned: DecimalSource
): Decimal {
return this.sumArithmeticSeries_core(
D(numItems),
D(priceStart),
D(priceAdd),
D(currentOwned)
);
}
/**
* When comparing two purchases that cost (resource) and increase your resource/sec by (deltaRpS),
* the lowest efficiency score is the better one to purchase.
* From Frozen Cookies:
* http://cookieclicker.wikia.com/wiki/Frozen_Cookies_(JavaScript_Add-on)#Efficiency.3F_What.27s_that.3F
*/
public static efficiencyOfPurchase(
cost: DecimalSource,
currentRpS: DecimalSource,
deltaRpS: DecimalSource
): Decimal {
return this.efficiencyOfPurchase_core(D(cost), D(currentRpS), D(deltaRpS));
}
public static randomDecimalForTesting(maxLayers: number): Decimal {
// NOTE: This doesn't follow any kind of sane random distribution, so use this for testing purposes only.
//5% of the time, return 0
if (Math.random() * 20 < 1) {
return FC_NN(0, 0, 0);
}
const randomsign = Math.random() > 0.5 ? 1 : -1;
//5% of the time, return 1 or -1
if (Math.random() * 20 < 1) {
return FC_NN(randomsign, 0, 1);
}
//pick a random layer
const layer = Math.floor(Math.random() * (maxLayers + 1));
let randomexp = layer === 0 ? Math.random() * 616 - 308 : Math.random() * 16;
//10% of the time, make it a simple power of 10
if (Math.random() > 0.9) {
randomexp = Math.trunc(randomexp);
}
let randommag = Math.pow(10, randomexp);
//10% of the time, trunc mag
if (Math.random() > 0.9) {
randommag = Math.trunc(randommag);
}
return FC(randomsign, layer, randommag);
}
public static affordGeometricSeries_core(
resourcesAvailable: Decimal,
priceStart: Decimal,
priceRatio: Decimal,
currentOwned: DecimalSource
): Decimal {
const actualStart = priceStart.mul(priceRatio.pow(currentOwned));
return Decimal.floor(
resourcesAvailable
.div(actualStart)
.mul(priceRatio.sub(1))
.add(1)
.log10()
.div(priceRatio.log10())
);
}
public static sumGeometricSeries_core(
numItems: DecimalSource,
priceStart: Decimal,
priceRatio: Decimal,
currentOwned: DecimalSource
): Decimal {
return priceStart
.mul(priceRatio.pow(currentOwned))
.mul(Decimal.sub(1, priceRatio.pow(numItems)))
.div(Decimal.sub(1, priceRatio));
}
public static affordArithmeticSeries_core(
resourcesAvailable: Decimal,
priceStart: Decimal,
priceAdd: Decimal,
currentOwned: Decimal
): Decimal {
// n = (-(a-d/2) + sqrt((a-d/2)^2+2dS))/d
// where a is actualStart, d is priceAdd and S is resourcesAvailable
// then floor it and you're done!
const actualStart = priceStart.add(currentOwned.mul(priceAdd));
const b = actualStart.sub(priceAdd.div(2));
const b2 = b.pow(2);
return b
.neg()
.add(b2.add(priceAdd.mul(resourcesAvailable).mul(2)).sqrt())
.div(priceAdd)
.floor();
}
public static sumArithmeticSeries_core(
numItems: Decimal,
priceStart: Decimal,
priceAdd: Decimal,
currentOwned: Decimal
): Decimal {
const actualStart = priceStart.add(currentOwned.mul(priceAdd)); // (n/2)*(2*a+(n-1)*d)
return numItems.div(2).mul(actualStart.mul(2).plus(numItems.sub(1).mul(priceAdd)));
}
public static efficiencyOfPurchase_core(
cost: Decimal,
currentRpS: Decimal,
deltaRpS: Decimal
): Decimal {
return cost.div(currentRpS).add(cost.div(deltaRpS));
}
public normalize(): this {
/*
PSEUDOCODE:
Whenever we are partially 0 (sign is 0 or mag and layer is 0), make it fully 0.
Whenever we are at or hit layer 0, extract sign from negative mag.
If layer === 0 and mag < FIRST_NEG_LAYER (1/9e15), shift to 'first negative layer' (add layer, log10 mag).
While abs(mag) > EXP_LIMIT (9e15), layer += 1, mag = maglog10(mag).
While abs(mag) < LAYER_DOWN (15.954) and layer > 0, layer -= 1, mag = pow(10, mag).
When we're done, all of the following should be true OR one of the numbers is not IsFinite OR layer is not IsInteger (error state):
Any 0 is totally zero (0, 0, 0).
Anything layer 0 has mag 0 OR mag > 1/9e15 and < 9e15.
Anything layer 1 or higher has abs(mag) >= 15.954 and < 9e15.
We will assume in calculations that all Decimals are either erroneous or satisfy these criteria. (Otherwise: Garbage in, garbage out.)
*/
if (this.sign === 0 || (this.mag === 0 && this.layer === 0)) {
this.sign = 0;
this.mag = 0;
this.layer = 0;
return this;
}
if (this.layer === 0 && this.mag < 0) {
//extract sign from negative mag at layer 0
this.mag = -this.mag;
this.sign = -this.sign;
}
//Handle shifting from layer 0 to negative layers.
if (this.layer === 0 && this.mag < FIRST_NEG_LAYER) {
this.layer += 1;
this.mag = Math.log10(this.mag);
return this;
}
let absmag = Math.abs(this.mag);
let signmag = Math.sign(this.mag);
if (absmag >= EXP_LIMIT) {
this.layer += 1;
this.mag = signmag * Math.log10(absmag);
return this;
} else {
while (absmag < LAYER_DOWN && this.layer > 0) {
this.layer -= 1;
if (this.layer === 0) {
this.mag = Math.pow(10, this.mag);
} else {
this.mag = signmag * Math.pow(10, absmag);
absmag = Math.abs(this.mag);
signmag = Math.sign(this.mag);
}
}
if (this.layer === 0) {
if (this.mag < 0) {
//extract sign from negative mag at layer 0
this.mag = -this.mag;
this.sign = -this.sign;
} else if (this.mag === 0) {
//excessive rounding can give us all zeroes
this.sign = 0;
}
}
}
return this;
}
public fromComponents(sign: number, layer: number, mag: number): this {
this.sign = sign;
this.layer = layer;
this.mag = mag;
this.normalize();
return this;
}
public fromComponents_noNormalize(sign: number, layer: number, mag: number): this {
this.sign = sign;
this.layer = layer;
this.mag = mag;
return this;
}
public fromMantissaExponent(mantissa: number, exponent: number): this {
this.layer = 1;
this.sign = Math.sign(mantissa);
mantissa = Math.abs(mantissa);
this.mag = exponent + Math.log10(mantissa);
this.normalize();
return this;
}
public fromMantissaExponent_noNormalize(mantissa: number, exponent: number): this {
//The idea of 'normalizing' a break_infinity.js style Decimal doesn't really apply. So just do the same thing.
this.fromMantissaExponent(mantissa, exponent);
return this;
}
public fromDecimal(value: Decimal): this {
this.sign = value.sign;
this.layer = value.layer;
this.mag = value.mag;
return this;
}
public fromNumber(value: number): this {
this.mag = Math.abs(value);
this.sign = Math.sign(value);
this.layer = 0;
this.normalize();
return this;
}
public fromString(value: string): Decimal {
const originalValue = value;
const cached = Decimal.fromStringCache.get(originalValue);
if (cached !== undefined) {
return this.fromDecimal(cached);
}
if (IGNORE_COMMAS) {
value = value.replace(",", "");
} else if (COMMAS_ARE_DECIMAL_POINTS) {
value = value.replace(",", ".");
}
//Handle x^^^y format.
const pentationparts = value.split("^^^");
if (pentationparts.length === 2) {
const base = parseFloat(pentationparts[0]);
const height = parseFloat(pentationparts[1]);
const heightparts = pentationparts[1].split(";");
let payload = 1;
if (heightparts.length === 2) {
payload = parseFloat(heightparts[1]);
if (!isFinite(payload)) {
payload = 1;
}
}
if (isFinite(base) && isFinite(height)) {
const result = Decimal.pentate(base, height, payload);
this.sign = result.sign;
this.layer = result.layer;
this.mag = result.mag;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
}
//Handle x^^y format.
const tetrationparts = value.split("^^");
if (tetrationparts.length === 2) {
const base = parseFloat(tetrationparts[0]);
const height = parseFloat(tetrationparts[1]);
const heightparts = tetrationparts[1].split(";");
let payload = 1;
if (heightparts.length === 2) {
payload = parseFloat(heightparts[1]);
if (!isFinite(payload)) {
payload = 1;
}
}
if (isFinite(base) && isFinite(height)) {
const result = Decimal.tetrate(base, height, payload);
this.sign = result.sign;
this.layer = result.layer;
this.mag = result.mag;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
}
//Handle x^y format.
const powparts = value.split("^");
if (powparts.length === 2) {
const base = parseFloat(powparts[0]);
const exponent = parseFloat(powparts[1]);
if (isFinite(base) && isFinite(exponent)) {
const result = Decimal.pow(base, exponent);
this.sign = result.sign;
this.layer = result.layer;
this.mag = result.mag;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
}
//Handle various cases involving it being a Big Number.
value = value.trim().toLowerCase();
//handle X PT Y format.
let base;
let height;
let ptparts = value.split("pt");
if (ptparts.length === 2) {
base = 10;
height = parseFloat(ptparts[0]);
ptparts[1] = ptparts[1].replace("(", "");
ptparts[1] = ptparts[1].replace(")", "");
let payload = parseFloat(ptparts[1]);
if (!isFinite(payload)) {
payload = 1;
}
if (isFinite(base) && isFinite(height)) {
const result = Decimal.tetrate(base, height, payload);
this.sign = result.sign;
this.layer = result.layer;
this.mag = result.mag;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
}
//handle XpY format (it's the same thing just with p).
ptparts = value.split("p");
if (ptparts.length === 2) {
base = 10;
height = parseFloat(ptparts[0]);
ptparts[1] = ptparts[1].replace("(", "");
ptparts[1] = ptparts[1].replace(")", "");
let payload = parseFloat(ptparts[1]);
if (!isFinite(payload)) {
payload = 1;
}
if (isFinite(base) && isFinite(height)) {
const result = Decimal.tetrate(base, height, payload);
this.sign = result.sign;
this.layer = result.layer;
this.mag = result.mag;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
}
const parts = value.split("e");
const ecount = parts.length - 1;
//Handle numbers that are exactly floats (0 or 1 es).
if (ecount === 0) {
const numberAttempt = parseFloat(value);
if (isFinite(numberAttempt)) {
this.fromNumber(numberAttempt);
if (Decimal.fromStringCache.size >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
} else if (ecount === 1) {
//Very small numbers ("2e-3000" and so on) may look like valid floats but round to 0.
const numberAttempt = parseFloat(value);
if (isFinite(numberAttempt) && numberAttempt !== 0) {
this.fromNumber(numberAttempt);
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
}
//Handle new (e^N)X format.
const newparts = value.split("e^");
if (newparts.length === 2) {
this.sign = 1;
if (newparts[0].charAt(0) == "-") {
this.sign = -1;
}
let layerstring = "";
for (let i = 0; i < newparts[1].length; ++i) {
const chrcode = newparts[1].charCodeAt(i);
if ((chrcode >= 43 && chrcode <= 57) || chrcode === 101) {
//is "0" to "9" or "+" or "-" or "." or "e" (or "," or "/")
layerstring += newparts[1].charAt(i);
} //we found the end of the layer count
else {
this.layer = parseFloat(layerstring);
this.mag = parseFloat(newparts[1].substr(i + 1));
this.normalize();
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
}
}
if (ecount < 1) {
this.sign = 0;
this.layer = 0;
this.mag = 0;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
const mantissa = parseFloat(parts[0]);
if (mantissa === 0) {
this.sign = 0;
this.layer = 0;
this.mag = 0;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
let exponent = parseFloat(parts[parts.length - 1]);
//handle numbers like AeBeC and AeeeeBeC
if (ecount >= 2) {
const me = parseFloat(parts[parts.length - 2]);
if (isFinite(me)) {
exponent *= Math.sign(me);
exponent += f_maglog10(me);
}
}
//Handle numbers written like eee... (N es) X
if (!isFinite(mantissa)) {
this.sign = parts[0] === "-" ? -1 : 1;
this.layer = ecount;
this.mag = exponent;
}
//Handle numbers written like XeY
else if (ecount === 1) {
this.sign = Math.sign(mantissa);
this.layer = 1;
//Example: 2e10 is equal to 10^log10(2e10) which is equal to 10^(10+log10(2))
this.mag = exponent + Math.log10(Math.abs(mantissa));
}
//Handle numbers written like Xeee... (N es) Y
else {
this.sign = Math.sign(mantissa);
this.layer = ecount;
if (ecount === 2) {
const result = Decimal.mul(FC(1, 2, exponent), D(mantissa));
this.sign = result.sign;
this.layer = result.layer;
this.mag = result.mag;
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
} else {
//at eee and above, mantissa is too small to be recognizable!
this.mag = exponent;
}
}
this.normalize();
if (Decimal.fromStringCache.maxSize >= 1) {
Decimal.fromStringCache.set(originalValue, Decimal.fromDecimal(this));
}
return this;
}
public fromValue(value: DecimalSource): Decimal {
if (value instanceof Decimal) {
return this.fromDecimal(value);
}
if (typeof value === "number") {
return this.fromNumber(value);
}
if (typeof value === "string") {
return this.fromString(value);
}
this.sign = 0;
this.layer = 0;
this.mag = 0;
return this;
}
public toNumber(): number {
if (!Number.isFinite(this.layer)) {
return Number.NaN;
}
if (this.layer === 0) {
return this.sign * this.mag;
} else if (this.layer === 1) {
return this.sign * Math.pow(10, this.mag);
} //overflow for any normalized Decimal
else {
return this.mag > 0
? this.sign > 0
? Number.POSITIVE_INFINITY
: Number.NEGATIVE_INFINITY
: 0;
}
}
public mantissaWithDecimalPlaces(places: number): number {
// https://stackoverflow.com/a/37425022
if (isNaN(this.m)) {
return Number.NaN;
}
if (this.m === 0) {
return 0;
}
return decimalPlaces(this.m, places);
}
public magnitudeWithDecimalPlaces(places: number): number {
// https://stackoverflow.com/a/37425022
if (isNaN(this.mag)) {
return Number.NaN;
}
if (this.mag === 0) {
return 0;
}
return decimalPlaces(this.mag, places);
}
public toString(): string {
if (isNaN(this.layer) || isNaN(this.sign) || isNaN(this.mag)) {
return "NaN";
}
if (this.mag === Number.POSITIVE_INFINITY || this.layer === Number.POSITIVE_INFINITY) {
return this.sign === 1 ? "Infinity" : "-Infinity";
}
if (this.layer === 0) {
if ((this.mag < 1e21 && this.mag > 1e-7) || this.mag === 0) {
return (this.sign * this.mag).toString();
}
return this.m + "e" + this.e;
} else if (this.layer === 1) {
return this.m + "e" + this.e;
} else {
//layer 2+
if (this.layer <= MAX_ES_IN_A_ROW) {
return (this.sign === -1 ? "-" : "") + "e".repeat(this.layer) + this.mag;
} else {
return (this.sign === -1 ? "-" : "") + "(e^" + this.layer + ")" + this.mag;
}
}
}
public toExponential(places: number): string {
if (this.layer === 0) {
return (this.sign * this.mag).toExponential(places);
}
return this.toStringWithDecimalPlaces(places);
}
public toFixed(places: number): string {
if (this.layer === 0) {
return (this.sign * this.mag).toFixed(places);
}
return this.toStringWithDecimalPlaces(places);
}
public toPrecision(places: number): string {
if (this.e <= -7) {
return this.toExponential(places - 1);
}
if (places > this.e) {
return this.toFixed(places - this.exponent - 1);
}
return this.toExponential(places - 1);
}
public valueOf(): string {
return this.toString();
}
public toJSON(): string {
return this.toString();
}
public toStringWithDecimalPlaces(places: number): string {
if (this.layer === 0) {
if ((this.mag < 1e21 && this.mag > 1e-7) || this.mag === 0) {
return (this.sign * this.mag).toFixed(places);
}
return decimalPlaces(this.m, places) + "e" + decimalPlaces(this.e, places);
} else if (this.layer === 1) {
return decimalPlaces(this.m, places) + "e" + decimalPlaces(this.e, places);
} else {
//layer 2+
if (this.layer <= MAX_ES_IN_A_ROW) {
return (
(this.sign === -1 ? "-" : "") +
"e".repeat(this.layer) +
decimalPlaces(this.mag, places)
);
} else {
return (
(this.sign === -1 ? "-" : "") +
"(e^" +
this.layer +
")" +
decimalPlaces(this.mag, places)
);
}
}
}
public abs(): Decimal {
return FC_NN(this.sign === 0 ? 0 : 1, this.layer, this.mag);
}
public neg(): Decimal {
return FC_NN(-this.sign, this.layer, this.mag);
}
public negate(): Decimal {
return this.neg();
}
public negated(): Decimal {
return this.neg();
}
// public sign () {
// return this.sign;
// }
public sgn(): number {
return this.sign;
}
public round(): this | Decimal {
if (this.mag < 0) {
return Decimal.dZero;
}
if (this.layer === 0) {
return FC(this.sign, 0, Math.round(this.mag));
}
return this;
}
public floor(): this | Decimal {
if (this.mag < 0) {
return Decimal.dZero;
}
if (this.layer === 0) {
return FC(this.sign, 0, Math.floor(this.mag));
}
return this;
}
public ceil(): this | Decimal {
if (this.mag < 0) {
return Decimal.dZero;
}
if (this.layer === 0) {
return FC(this.sign, 0, Math.ceil(this.mag));
}
return this;
}
public trunc(): this | Decimal {
if (this.mag < 0) {
return Decimal.dZero;
}
if (this.layer === 0) {
return FC(this.sign, 0, Math.trunc(this.mag));
}
return this;
}
public add(value: DecimalSource): this | Decimal {
const decimal = D(value);
//inf/nan check
if (!Number.isFinite(this.layer)) {
return this;
}
if (!Number.isFinite(decimal.layer)) {
return decimal;
}
//Special case - if one of the numbers is 0, return the other number.
if (this.sign === 0) {
return decimal;
}
if (decimal.sign === 0) {
return this;
}
//Special case - Adding a number to its negation produces 0, no matter how large.
if (
this.sign === -decimal.sign &&
this.layer === decimal.layer &&
this.mag === decimal.mag
) {
return FC_NN(0, 0, 0);
}
let a;
let b;
//Special case: If one of the numbers is layer 2 or higher, just take the bigger number.
if (this.layer >= 2 || decimal.layer >= 2) {
return this.maxabs(decimal);
}
if (Decimal.cmpabs(this, decimal) > 0) {
a = this;
b = decimal;
} else {
a = decimal;
b = this;
}
if (a.layer === 0 && b.layer === 0) {
return Decimal.fromNumber(a.sign * a.mag + b.sign * b.mag);
}
const layera = a.layer * Math.sign(a.mag);
const layerb = b.layer * Math.sign(b.mag);
//If one of the numbers is 2+ layers higher than the other, just take the bigger number.
if (layera - layerb >= 2) {
return a;
}
if (layera === 0 && layerb === -1) {
if (Math.abs(b.mag - Math.log10(a.mag)) > MAX_SIGNIFICANT_DIGITS) {
return a;
} else {
const magdiff = Math.pow(10, Math.log10(a.mag) - b.mag);
const mantissa = b.sign + a.sign * magdiff;
return FC(Math.sign(mantissa), 1, b.mag + Math.log10(Math.abs(mantissa)));
}
}
if (layera === 1 && layerb === 0) {
if (Math.abs(a.mag - Math.log10(b.mag)) > MAX_SIGNIFICANT_DIGITS) {
return a;
} else {
const magdiff = Math.pow(10, a.mag - Math.log10(b.mag));
const mantissa = b.sign + a.sign * magdiff;
return FC(
Math.sign(mantissa),
1,
Math.log10(b.mag) + Math.log10(Math.abs(mantissa))
);
}
}
if (Math.abs(a.mag - b.mag) > MAX_SIGNIFICANT_DIGITS) {
return a;
} else {
const magdiff = Math.pow(10, a.mag - b.mag);
const mantissa = b.sign + a.sign * magdiff;
return FC(Math.sign(mantissa), 1, b.mag + Math.log10(Math.abs(mantissa)));
}
throw Error("Bad arguments to add: " + this + ", " + value);
}
public plus(value: DecimalSource): Decimal {
return this.add(value);
}
public sub(value: DecimalSource): Decimal {
return this.add(D(value).neg());
}
public subtract(value: DecimalSource): Decimal {
return this.sub(value);
}
public minus(value: DecimalSource): Decimal {
return this.sub(value);
}
public mul(value: DecimalSource): Decimal {
const decimal = D(value);
//inf/nan check
if (!Number.isFinite(this.layer)) {
return this;
}
if (!Number.isFinite(decimal.layer)) {
return decimal;
}
//Special case - if one of the numbers is 0, return 0.
if (this.sign === 0 || decimal.sign === 0) {
return FC_NN(0, 0, 0);
}
//Special case - Multiplying a number by its own reciprocal yields +/- 1, no matter how large.
if (this.layer === decimal.layer && this.mag === -decimal.mag) {
return FC_NN(this.sign * decimal.sign, 0, 1);
}
let a;
let b;
//Which number is bigger in terms of its multiplicative distance from 1?
if (
this.layer > decimal.layer ||
(this.layer == decimal.layer && Math.abs(this.mag) > Math.abs(decimal.mag))
) {
a = this;
b = decimal;
} else {
a = decimal;
b = this;
}
if (a.layer === 0 && b.layer === 0) {
return Decimal.fromNumber(a.sign * b.sign * a.mag * b.mag);
}
//Special case: If one of the numbers is layer 3 or higher or one of the numbers is 2+ layers bigger than the other, just take the bigger number.
if (a.layer >= 3 || a.layer - b.layer >= 2) {
return FC(a.sign * b.sign, a.layer, a.mag);
}
if (a.layer === 1 && b.layer === 0) {
return FC(a.sign * b.sign, 1, a.mag + Math.log10(b.mag));
}
if (a.layer === 1 && b.layer === 1) {
return FC(a.sign * b.sign, 1, a.mag + b.mag);
}
if (a.layer === 2 && b.layer === 1) {
const newmag = FC(Math.sign(a.mag), a.layer - 1, Math.abs(a.mag)).add(
FC(Math.sign(b.mag), b.layer - 1, Math.abs(b.mag))
);
return FC(a.sign * b.sign, newmag.layer + 1, newmag.sign * newmag.mag);
}
if (a.layer === 2 && b.layer === 2) {
const newmag = FC(Math.sign(a.mag), a.layer - 1, Math.abs(a.mag)).add(
FC(Math.sign(b.mag), b.layer - 1, Math.abs(b.mag))
);
return FC(a.sign * b.sign, newmag.layer + 1, newmag.sign * newmag.mag);
}
throw Error("Bad arguments to mul: " + this + ", " + value);
}
public multiply(value: DecimalSource): Decimal {
return this.mul(value);
}
public times(value: DecimalSource): Decimal {
return this.mul(value);
}
public div(value: DecimalSource): Decimal {
const decimal = D(value);
return this.mul(decimal.recip());
}
public divide(value: DecimalSource): Decimal {
return this.div(value);
}
public divideBy(value: DecimalSource): Decimal {
return this.div(value);
}
public dividedBy(value: DecimalSource): Decimal {
return this.div(value);
}
public recip(): Decimal {
if (this.mag === 0) {
return Decimal.dNaN;
} else if (this.layer === 0) {
return FC(this.sign, 0, 1 / this.mag);
} else {
return FC(this.sign, this.layer, -this.mag);
}
}
public reciprocal(): Decimal {
return this.recip();
}
public reciprocate(): Decimal {
return this.recip();
}
/**
* -1 for less than value, 0 for equals value, 1 for greater than value
*/
public cmp(value: DecimalSource): CompareResult {
const decimal = D(value);
if (this.sign > decimal.sign) {
return 1;
}
if (this.sign < decimal.sign) {
return -1;
}
return (this.sign * this.cmpabs(value)) as CompareResult;
}
public cmpabs(value: DecimalSource): CompareResult {
const decimal = D(value);
const layera = this.mag > 0 ? this.layer : -this.layer;
const layerb = decimal.mag > 0 ? decimal.layer : -decimal.layer;
if (layera > layerb) {
return 1;
}
if (layera < layerb) {
return -1;
}
if (this.mag > decimal.mag) {
return 1;
}
if (this.mag < decimal.mag) {
return -1;
}
return 0;
}
public compare(value: DecimalSource): CompareResult {
return this.cmp(value);
}
public isNan(): boolean {
return isNaN(this.sign) || isNaN(this.layer) || isNaN(this.mag);
}
public isFinite(): boolean {
return isFinite(this.sign) && isFinite(this.layer) && isFinite(this.mag);
}
public eq(value: DecimalSource): boolean {
const decimal = D(value);
return (
this.sign === decimal.sign && this.layer === decimal.layer && this.mag === decimal.mag
);
}
public equals(value: DecimalSource): boolean {
return this.eq(value);
}
public neq(value: DecimalSource): boolean {
return !this.eq(value);
}
public notEquals(value: DecimalSource): boolean {
return this.neq(value);
}
public lt(value: DecimalSource): boolean {
return this.cmp(value) === -1;
}
public lte(value: DecimalSource): boolean {
return !this.gt(value);
}
public gt(value: DecimalSource): boolean {
return this.cmp(value) === 1;
}
public gte(value: DecimalSource): boolean {
return !this.lt(value);
}
public max(value: DecimalSource): Decimal {
const decimal = D(value);
return this.lt(decimal) ? decimal : this;
}
public min(value: DecimalSource): Decimal {
const decimal = D(value);
return this.gt(decimal) ? decimal : this;
}
public maxabs(value: DecimalSource): Decimal {
const decimal = D(value);
return this.cmpabs(decimal) < 0 ? decimal : this;
}
public minabs(value: DecimalSource): Decimal {
const decimal = D(value);
return this.cmpabs(decimal) > 0 ? decimal : this;
}
public clamp(min: DecimalSource, max: DecimalSource): Decimal {
return this.max(min).min(max);
}
public clampMin(min: DecimalSource): Decimal {
return this.max(min);
}
public clampMax(max: DecimalSource): Decimal {
return this.min(max);
}
public cmp_tolerance(value: DecimalSource, tolerance: number): CompareResult {
const decimal = D(value);
return this.eq_tolerance(decimal, tolerance) ? 0 : this.cmp(decimal);
}
public compare_tolerance(value: DecimalSource, tolerance: number): CompareResult {
return this.cmp_tolerance(value, tolerance);
}
/**
* Tolerance is a relative tolerance, multiplied by the greater of the magnitudes of the two arguments.
* For example, if you put in 1e-9, then any number closer to the
* larger number than (larger number)*1e-9 will be considered equal.
*/
public eq_tolerance(value: DecimalSource, tolerance?: number): boolean {
const decimal = D(value); // https://stackoverflow.com/a/33024979
if (tolerance == null) {
tolerance = 1e-7;
}
//Numbers that are too far away are never close.
if (this.sign !== decimal.sign) {
return false;
}
if (Math.abs(this.layer - decimal.layer) > 1) {
return false;
}
// return abs(a-b) <= tolerance * max(abs(a), abs(b))
let magA = this.mag;
let magB = decimal.mag;
if (this.layer > decimal.layer) {
magB = f_maglog10(magB);
}
if (this.layer < decimal.layer) {
magA = f_maglog10(magA);
}
return Math.abs(magA - magB) <= tolerance * Math.max(Math.abs(magA), Math.abs(magB));
}
public equals_tolerance(value: DecimalSource, tolerance: number): boolean {
return this.eq_tolerance(value, tolerance);
}
public neq_tolerance(value: DecimalSource, tolerance: number): boolean {
return !this.eq_tolerance(value, tolerance);
}
public notEquals_tolerance(value: DecimalSource, tolerance: number): boolean {
return this.neq_tolerance(value, tolerance);
}
public lt_tolerance(value: DecimalSource, tolerance: number): boolean {
const decimal = D(value);
return !this.eq_tolerance(decimal, tolerance) && this.lt(decimal);
}
public lte_tolerance(value: DecimalSource, tolerance: number): boolean {
const decimal = D(value);
return this.eq_tolerance(decimal, tolerance) || this.lt(decimal);
}
public gt_tolerance(value: DecimalSource, tolerance: number): boolean {
const decimal = D(value);
return !this.eq_tolerance(decimal, tolerance) && this.gt(decimal);
}
public gte_tolerance(value: DecimalSource, tolerance: number): boolean {
const decimal = D(value);
return this.eq_tolerance(decimal, tolerance) || this.gt(decimal);
}
public pLog10(): Decimal {
if (this.lt(Decimal.dZero)) {
return Decimal.dZero;
}
return this.log10();
}
public absLog10(): Decimal {
if (this.sign === 0) {
return Decimal.dNaN;
} else if (this.layer > 0) {
return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag));
} else {
return FC(1, 0, Math.log10(this.mag));
}
}
public log10(): Decimal {
if (this.sign <= 0) {
return Decimal.dNaN;
} else if (this.layer > 0) {
return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag));
} else {
return FC(this.sign, 0, Math.log10(this.mag));
}
}
public log(base: DecimalSource): Decimal {
base = D(base);
if (this.sign <= 0) {
return Decimal.dNaN;
}
if (base.sign <= 0) {
return Decimal.dNaN;
}
if (base.sign === 1 && base.layer === 0 && base.mag === 1) {
return Decimal.dNaN;
} else if (this.layer === 0 && base.layer === 0) {
return FC(this.sign, 0, Math.log(this.mag) / Math.log(base.mag));
}
return Decimal.div(this.log10(), base.log10());
}
public log2(): Decimal {
if (this.sign <= 0) {
return Decimal.dNaN;
} else if (this.layer === 0) {
return FC(this.sign, 0, Math.log2(this.mag));
} else if (this.layer === 1) {
return FC(Math.sign(this.mag), 0, Math.abs(this.mag) * 3.321928094887362); //log2(10)
} else if (this.layer === 2) {
return FC(Math.sign(this.mag), 1, Math.abs(this.mag) + 0.5213902276543247); //-log10(log10(2))
} else {
return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag));
}
}
public ln(): Decimal {
if (this.sign <= 0) {
return Decimal.dNaN;
} else if (this.layer === 0) {
return FC(this.sign, 0, Math.log(this.mag));
} else if (this.layer === 1) {
return FC(Math.sign(this.mag), 0, Math.abs(this.mag) * 2.302585092994046); //ln(10)
} else if (this.layer === 2) {
return FC(Math.sign(this.mag), 1, Math.abs(this.mag) + 0.36221568869946325); //log10(log10(e))
} else {
return FC(Math.sign(this.mag), this.layer - 1, Math.abs(this.mag));
}
}
public logarithm(base: DecimalSource): Decimal {
return this.log(base);
}
public pow(value: DecimalSource): Decimal {
const decimal = D(value);
const a = this;
const b = decimal;
//special case: if a is 0, then return 0 (UNLESS b is 0, then return 1)
if (a.sign === 0) {
return b.eq(0) ? FC_NN(1, 0, 1) : a;
}
//special case: if a is 1, then return 1
if (a.sign === 1 && a.layer === 0 && a.mag === 1) {
return a;
}
//special case: if b is 0, then return 1
if (b.sign === 0) {
return FC_NN(1, 0, 1);
}
//special case: if b is 1, then return a
if (b.sign === 1 && b.layer === 0 && b.mag === 1) {
return a;
}
const result = a.absLog10().mul(b).pow10();
if (this.sign === -1) {
if (Math.abs(b.toNumber() % 2) % 2 === 1) {
return result.neg();
} else if (Math.abs(b.toNumber() % 2) % 2 === 0) {
return result;
}
return Decimal.dNaN;
}
return result;
}
public pow10(): Decimal {
/*
There are four cases we need to consider:
1) positive sign, positive mag (e15, ee15): +1 layer (e.g. 10^15 becomes e15, 10^e15 becomes ee15)
2) negative sign, positive mag (-e15, -ee15): +1 layer but sign and mag sign are flipped (e.g. 10^-15 becomes e-15, 10^-e15 becomes ee-15)
3) positive sign, negative mag (e-15, ee-15): layer 0 case would have been handled in the Math.pow check, so just return 1
4) negative sign, negative mag (-e-15, -ee-15): layer 0 case would have been handled in the Math.pow check, so just return 1
*/
if (!Number.isFinite(this.layer) || !Number.isFinite(this.mag)) {
return Decimal.dNaN;
}
let a: Decimal = this;
//handle layer 0 case - if no precision is lost just use Math.pow, else promote one layer
if (a.layer === 0) {
const newmag = Math.pow(10, a.sign * a.mag);
if (Number.isFinite(newmag) && Math.abs(newmag) >= 0.1) {
return FC(1, 0, newmag);
} else {
if (a.sign === 0) {
return Decimal.dOne;
} else {
a = FC_NN(a.sign, a.layer + 1, Math.log10(a.mag));
}
}
}
//handle all 4 layer 1+ cases individually
if (a.sign > 0 && a.mag >= 0) {
return FC(a.sign, a.layer + 1, a.mag);
}
if (a.sign < 0 && a.mag >= 0) {
return FC(-a.sign, a.layer + 1, -a.mag);
}
//both the negative mag cases are identical: one +/- rounding error
return Decimal.dOne;
}
public pow_base(value: DecimalSource): Decimal {
return D(value).pow(this);
}
public root(value: DecimalSource): Decimal {
const decimal = D(value);
return this.pow(decimal.recip());
}
public factorial(): Decimal {
if (this.mag < 0) {
return this.add(1).gamma();
} else if (this.layer === 0) {
return this.add(1).gamma();
} else if (this.layer === 1) {
return Decimal.exp(Decimal.mul(this, Decimal.ln(this).sub(1)));
} else {
return Decimal.exp(this);
}
}
//from HyperCalc source code
public gamma(): Decimal {
if (this.mag < 0) {
return this.recip();
} else if (this.layer === 0) {
if (this.lt(FC_NN(1, 0, 24))) {
return Decimal.fromNumber(f_gamma(this.sign * this.mag));
}
const t = this.mag - 1;
let l = 0.9189385332046727; //0.5*Math.log(2*Math.PI)
l = l + (t + 0.5) * Math.log(t);
l = l - t;
const n2 = t * t;
let np = t;
let lm = 12 * np;
let adj = 1 / lm;
let l2 = l + adj;
if (l2 === l) {
return Decimal.exp(l);
}
l = l2;
np = np * n2;
lm = 360 * np;
adj = 1 / lm;
l2 = l - adj;
if (l2 === l) {
return Decimal.exp(l);
}
l = l2;
np = np * n2;
lm = 1260 * np;
let lt = 1 / lm;
l = l + lt;
np = np * n2;
lm = 1680 * np;
lt = 1 / lm;
l = l - lt;
return Decimal.exp(l);
} else if (this.layer === 1) {
return Decimal.exp(Decimal.mul(this, Decimal.ln(this).sub(1)));
} else {
return Decimal.exp(this);
}
}
public lngamma(): Decimal {
return this.gamma().ln();
}
public exp(): Decimal {
if (this.mag < 0) {
return Decimal.dOne;
}
if (this.layer === 0 && this.mag <= 709.7) {
return Decimal.fromNumber(Math.exp(this.sign * this.mag));
} else if (this.layer === 0) {
return FC(1, 1, this.sign * Math.log10(Math.E) * this.mag);
} else if (this.layer === 1) {
return FC(1, 2, this.sign * (Math.log10(0.4342944819032518) + this.mag));
} else {
return FC(1, this.layer + 1, this.sign * this.mag);
}
}
public sqr(): Decimal {
return this.pow(2);
}
public sqrt(): Decimal {
if (this.layer === 0) {
return Decimal.fromNumber(Math.sqrt(this.sign * this.mag));
} else if (this.layer === 1) {
return FC(1, 2, Math.log10(this.mag) - 0.3010299956639812);
} else {
const result = Decimal.div(FC_NN(this.sign, this.layer - 1, this.mag), FC_NN(1, 0, 2));
result.layer += 1;
result.normalize();
return result;
}
}
public cube(): Decimal {
return this.pow(3);
}
public cbrt(): Decimal {
return this.pow(1 / 3);
}
//Tetration/tetrate: The result of exponentiating 'this' to 'this' 'height' times in a row. https://en.wikipedia.org/wiki/Tetration
//If payload != 1, then this is 'iterated exponentiation', the result of exping (payload) to base (this) (height) times. https://andydude.github.io/tetration/archives/tetration2/ident.html
//Works with negative and positive real heights.
public tetrate(height = 2, payload: DecimalSource = FC_NN(1, 0, 1)): Decimal {
//x^^1 == x
if (height === 1) {
return Decimal.pow(this, payload);
}
//x^^0 == 1
if (height === 0) {
return new Decimal(payload);
}
//1^^x == 1
if (this.eq(Decimal.dOne)) {
return Decimal.dOne;
}
//-1^^x == -1
if (this.eq(-1)) {
return Decimal.pow(this, payload);
}
if (height === Number.POSITIVE_INFINITY) {
const this_num = this.toNumber();
//within the convergence range?
if (this_num <= 1.44466786100976613366 && this_num >= 0.06598803584531253708) {
//hotfix for the very edge of the number range not being handled properly
if (this_num > 1.444667861009099) {
return Decimal.fromNumber(Math.E);
}
//Formula for infinite height power tower.
const negln = Decimal.ln(this).neg();
return negln.lambertw().div(negln);
} else if (this_num > 1.44466786100976613366) {
//explodes to infinity
// TODO: replace this with Decimal.dInf
return Decimal.fromNumber(Number.POSITIVE_INFINITY);
} else {
//0.06598803584531253708 > this_num >= 0: never converges
//this_num < 0: quickly becomes a complex number
return Decimal.dNaN;
}
}
//0^^x oscillates if we define 0^0 == 1 (which in javascript land we do), since then 0^^1 is 0, 0^^2 is 1, 0^^3 is 0, etc. payload is ignored
//using the linear approximation for height (TODO: don't know a better way to calculate it ATM, but it wouldn't surprise me if it's just NaN)
if (this.eq(Decimal.dZero)) {
let result = Math.abs((height + 1) % 2);
if (result > 1) {
result = 2 - result;
}
return Decimal.fromNumber(result);
}
if (height < 0) {
return Decimal.iteratedlog(payload, this, -height);
}
payload = D(payload);
const oldheight = height;
height = Math.trunc(height);
const fracheight = oldheight - height;
if (this.gt(Decimal.dZero) && this.lte(1.44466786100976613366)) {
//similar to 0^^n, flip-flops between two values, converging slowly (or if it's below 0.06598803584531253708, never. so once again, the fractional part at the end will be a linear approximation (TODO: again pending knowledge of how to approximate better, although tbh I think it should in reality just be NaN)
height = Math.min(10000, height);
for (let i = 0; i < height; ++i) {
const old_payload: Decimal = payload;
payload = this.pow(payload);
//stop early if we converge
if (old_payload.eq(payload)) {
return payload;
}
}
if (fracheight != 0) {
const next_payload = this.pow(payload);
return payload.mul(1 - fracheight).add(next_payload.mul(fracheight));
}
return payload;
}
//TODO: base < 0, but it's hard for me to reason about (probably all non-integer heights are NaN automatically?)
if (fracheight !== 0) {
if (payload.eq(Decimal.dOne)) {
//TODO: for bases above 10, revert to old linear approximation until I can think of something better
if (this.gt(10)) {
payload = this.pow(fracheight);
} else {
payload = Decimal.fromNumber(
Decimal.tetrate_critical(this.toNumber(), fracheight)
);
//TODO: until the critical section grid can handle numbers below 2, scale them to the base
//TODO: maybe once the critical section grid has very large bases, this math can be appropriate for them too? I'll think about it
if (this.lt(2)) {
payload = payload.sub(1).mul(this.minus(1)).plus(1);
}
}
} else {
if (this.eq(10)) {
payload = payload.layeradd10(fracheight);
} else {
payload = payload.layeradd(fracheight, this);
}
}
}
for (let i = 0; i < height; ++i) {
payload = this.pow(payload);
//bail if we're NaN
if (!isFinite(payload.layer) || !isFinite(payload.mag)) {
return payload.normalize();
}
//shortcut
if (payload.layer - this.layer > 3) {
return FC_NN(payload.sign, payload.layer + (height - i - 1), payload.mag);
}
//give up after 10000 iterations if nothing is happening
if (i > 10000) {
return payload;
}
}
return payload;
}
//iteratedexp/iterated exponentiation: - all cases handled in tetrate, so just call it
public iteratedexp(height = 2, payload = FC_NN(1, 0, 1)): Decimal {
return this.tetrate(height, payload);
}
//iterated log/repeated log: The result of applying log(base) 'times' times in a row. Approximately equal to subtracting (times) from the number's slog representation. Equivalent to tetrating to a negative height.
//Works with negative and positive real heights.
public iteratedlog(base: DecimalSource = 10, times = 1): Decimal {
if (times < 0) {
return Decimal.tetrate(base, -times, this);
}
base = D(base);
let result = Decimal.fromDecimal(this);
const fulltimes = times;
times = Math.trunc(times);
const fraction = fulltimes - times;
if (result.layer - base.layer > 3) {
const layerloss = Math.min(times, result.layer - base.layer - 3);
times -= layerloss;
result.layer -= layerloss;
}
for (let i = 0; i < times; ++i) {
result = result.log(base);
//bail if we're NaN
if (!isFinite(result.layer) || !isFinite(result.mag)) {
return result.normalize();
}
//give up after 10000 iterations if nothing is happening
if (i > 10000) {
return result;
}
}
//handle fractional part
if (fraction > 0 && fraction < 1) {
if (base.eq(10)) {
result = result.layeradd10(-fraction);
} else {
result = result.layeradd(-fraction, base);
}
}
return result;
}
//Super-logarithm, one of tetration's inverses, tells you what size power tower you'd have to tetrate base to to get number. By definition, will never be higher than 1.8e308 in break_eternity.js, since a power tower 1.8e308 numbers tall is the largest representable number.
// https://en.wikipedia.org/wiki/Super-logarithm
// NEW: Accept a number of iterations, and use binary search to, after making an initial guess, hone in on the true value, assuming tetration as the ground truth.
public slog(base: DecimalSource = 10, iterations = 100): Decimal {
let step_size = 0.001;
let has_changed_directions_once = false;
let previously_rose = false;
let result = this.slog_internal(base).toNumber();
for (let i = 1; i < iterations; ++i) {
const new_decimal = new Decimal(base).tetrate(result);
const currently_rose = new_decimal.gt(this);
if (i > 1) {
if (previously_rose != currently_rose) {
has_changed_directions_once = true;
}
}
previously_rose = currently_rose;
if (has_changed_directions_once) {
step_size /= 2;
} else {
step_size *= 2;
}
step_size = Math.abs(step_size) * (currently_rose ? -1 : 1);
result += step_size;
if (step_size === 0) {
break;
}
}
return Decimal.fromNumber(result);
}
public slog_internal(base: DecimalSource = 10): Decimal {
base = D(base);
//special cases:
//slog base 0 or lower is NaN
if (base.lte(Decimal.dZero)) {
return Decimal.dNaN;
}
//slog base 1 is NaN
if (base.eq(Decimal.dOne)) {
return Decimal.dNaN;
}
//need to handle these small, wobbling bases specially
if (base.lt(Decimal.dOne)) {
if (this.eq(Decimal.dOne)) {
return Decimal.dZero;
}
if (this.eq(Decimal.dZero)) {
return Decimal.dNegOne;
}
//0 < this < 1: ambiguous (happens multiple times)
//this < 0: impossible (as far as I can tell)
//this > 1: partially complex (http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html base 0.25 for proof)
return Decimal.dNaN;
}
//slog_n(0) is -1
if (this.mag < 0 || this.eq(Decimal.dZero)) {
return Decimal.dNegOne;
}
let result = 0;
let copy = Decimal.fromDecimal(this);
if (copy.layer - base.layer > 3) {
const layerloss = copy.layer - base.layer - 3;
result += layerloss;
copy.layer -= layerloss;
}
for (let i = 0; i < 100; ++i) {
if (copy.lt(Decimal.dZero)) {
copy = Decimal.pow(base, copy);
result -= 1;
} else if (copy.lte(Decimal.dOne)) {
return Decimal.fromNumber(
result + Decimal.slog_critical(base.toNumber(), copy.toNumber())
);
} else {
result += 1;
copy = Decimal.log(copy, base);
}
}
return Decimal.fromNumber(result);
}
//background info and tables of values for critical functions taken here: https://github.com/Patashu/break_eternity.js/issues/22
public static slog_critical(base: number, height: number): number {
//TODO: for bases above 10, revert to old linear approximation until I can think of something better
if (base > 10) {
return height - 1;
}
return Decimal.critical_section(base, height, critical_slog_values);
}
public static tetrate_critical(base: number, height: number): number {
return Decimal.critical_section(base, height, critical_tetr_values);
}
public static critical_section(base: number, height: number, grid: number[][]): number {
//this part is simple at least, since it's just 0.1 to 0.9
height *= 10;
if (height < 0) {
height = 0;
}
if (height > 10) {
height = 10;
}
//have to do this complicated song and dance since one of the critical_headers is Math.E, and in the future I'd like 1.5 as well
if (base < 2) {
base = 2;
}
if (base > 10) {
base = 10;
}
let lower = 0;
let upper = 0;
//basically, if we're between bases, we interpolate each bases' relevant values together
//then we interpolate based on what the fractional height is.
//accuracy could be improved by doing a non-linear interpolation (maybe), by adding more bases and heights (definitely) but this is AFAIK the best you can get without running some pari.gp or mathematica program to calculate exact values
//however, do note http://myweb.astate.edu/wpaulsen/tetcalc/tetcalc.html can do it for arbitrary heights but not for arbitrary bases (2, e, 10 present)
for (let i = 0; i < critical_headers.length; ++i) {
if (critical_headers[i] == base) {
// exact match
lower = grid[i][Math.floor(height)];
upper = grid[i][Math.ceil(height)];
break;
} else if (critical_headers[i] < base && critical_headers[i + 1] > base) {
// interpolate between this and the next
const basefrac =
(base - critical_headers[i]) / (critical_headers[i + 1] - critical_headers[i]);
lower =
grid[i][Math.floor(height)] * (1 - basefrac) +
grid[i + 1][Math.floor(height)] * basefrac;
upper =
grid[i][Math.ceil(height)] * (1 - basefrac) +
grid[i + 1][Math.ceil(height)] * basefrac;
break;
}
}
const frac = height - Math.floor(height);
//improvement - you get more accuracy (especially around 0.9-1.0) by doing log, then frac, then powing the result
//(we could pre-log the lookup table, but then fractional bases would get Weird)
//also, use old linear for slog (values 0 or less in critical section). maybe something else is better but haven't thought about what yet
if (lower <= 0 || upper <= 0) {
return lower * (1 - frac) + upper * frac;
} else {
return Math.pow(
base,
(Math.log(lower) / Math.log(base)) * (1 - frac) +
(Math.log(upper) / Math.log(base)) * frac
);
}
}
//Function for adding/removing layers from a Decimal, even fractional layers (e.g. its slog10 representation).
//Moved this over to use the same critical section as tetrate/slog.
public layeradd10(diff: DecimalSource): Decimal {
diff = Decimal.fromValue_noAlloc(diff).toNumber();
const result = Decimal.fromDecimal(this);
if (diff >= 1) {
//bug fix: if result is very smol (mag < 0, layer > 0) turn it into 0 first
if (result.mag < 0 && result.layer > 0) {
result.sign = 0;
result.mag = 0;
result.layer = 0;
} else if (result.sign === -1 && result.layer == 0) {
//bug fix - for stuff like -3.layeradd10(1) we need to move the sign to the mag
result.sign = 1;
result.mag = -result.mag;
}
const layeradd = Math.trunc(diff);
diff -= layeradd;
result.layer += layeradd;
}
if (diff <= -1) {
const layeradd = Math.trunc(diff);
diff -= layeradd;
result.layer += layeradd;
if (result.layer < 0) {
for (let i = 0; i < 100; ++i) {
result.layer++;
result.mag = Math.log10(result.mag);
if (!isFinite(result.mag)) {
//another bugfix: if we hit -Infinity mag, then we should return negative infinity, not 0. 0.layeradd10(-1) h its this
if (result.sign === 0) {
result.sign = 1;
}
//also this, for 0.layeradd10(-2)
if (result.layer < 0) {
result.layer = 0;
}
return result.normalize();
}
if (result.layer >= 0) {
break;
}
}
}
}
while (result.layer < 0) {
result.layer++;
result.mag = Math.log10(result.mag);
}
//bugfix: before we normalize: if we started with 0, we now need to manually fix a layer ourselves!
if (result.sign === 0) {
result.sign = 1;
if (result.mag === 0 && result.layer >= 1) {
result.layer -= 1;
result.mag = 1;
}
}
result.normalize();
//layeradd10: like adding 'diff' to the number's slog(base) representation. Very similar to tetrate base 10 and iterated log base 10. Also equivalent to adding a fractional amount to the number's layer in its break_eternity.js representation.
if (diff !== 0) {
return result.layeradd(diff, 10); //safe, only calls positive height 1 payload tetration, slog and log
}
return result;
}
//layeradd: like adding 'diff' to the number's slog(base) representation. Very similar to tetrate base 'base' and iterated log base 'base'.
public layeradd(diff: number, base: DecimalSource): Decimal {
const slogthis = this.slog(base).toNumber();
const slogdest = slogthis + diff;
if (slogdest >= 0) {
return Decimal.tetrate(base, slogdest);
} else if (!Number.isFinite(slogdest)) {
return Decimal.dNaN;
} else if (slogdest >= -1) {
return Decimal.log(Decimal.tetrate(base, slogdest + 1), base);
} else {
return Decimal.log(Decimal.log(Decimal.tetrate(base, slogdest + 2), base), base);
}
}
//The Lambert W function, also called the omega function or product logarithm, is the solution W(x) === x*e^x.
// https://en.wikipedia.org/wiki/Lambert_W_function
//Some special values, for testing: https://en.wikipedia.org/wiki/Lambert_W_function#Special_values
public lambertw(): Decimal {
if (this.lt(-0.3678794411710499)) {
throw Error("lambertw is unimplemented for results less than -1, sorry!");
} else if (this.mag < 0) {
return Decimal.fromNumber(f_lambertw(this.toNumber()));
} else if (this.layer === 0) {
return Decimal.fromNumber(f_lambertw(this.sign * this.mag));
} else if (this.layer === 1) {
return d_lambertw(this);
} else if (this.layer === 2) {
return d_lambertw(this);
}
if (this.layer >= 3) {
return FC_NN(this.sign, this.layer - 1, this.mag);
}
throw "Unhandled behavior in lambertw()";
}
//The super square-root function - what number, tetrated to height 2, equals this?
//Other sroots are possible to calculate probably through guess and check methods, this one is easy though.
// https://en.wikipedia.org/wiki/Tetration#Super-root
public ssqrt(): Decimal {
if (this.sign == 1 && this.layer >= 3) {
return FC_NN(this.sign, this.layer - 1, this.mag);
}
const lnx = this.ln();
return lnx.div(lnx.lambertw());
}
//Pentation/pentate: The result of tetrating 'height' times in a row. An absurdly strong operator - Decimal.pentate(2, 4.28) and Decimal.pentate(10, 2.37) are already too huge for break_eternity.js!
// https://en.wikipedia.org/wiki/Pentation
public pentate(height = 2, payload: DecimalSource = FC_NN(1, 0, 1)): Decimal {
payload = D(payload);
const oldheight = height;
height = Math.trunc(height);
const fracheight = oldheight - height;
//I have no idea if this is a meaningful approximation for pentation to continuous heights, but it is monotonic and continuous.
if (fracheight !== 0) {
if (payload.eq(Decimal.dOne)) {
++height;
payload = Decimal.fromNumber(fracheight);
} else {
if (this.eq(10)) {
payload = payload.layeradd10(fracheight);
} else {
payload = payload.layeradd(fracheight, this);
}
}
}
for (let i = 0; i < height; ++i) {
payload = this.tetrate(payload.toNumber());
//bail if we're NaN
if (!isFinite(payload.layer) || !isFinite(payload.mag)) {
return payload.normalize();
}
//give up after 10 iterations if nothing is happening
if (i > 10) {
return payload;
}
}
return payload;
}
// trig functions!
public sin(): this | Decimal {
if (this.mag < 0) {
return this;
}
if (this.layer === 0) {
return Decimal.fromNumber(Math.sin(this.sign * this.mag));
}
return FC_NN(0, 0, 0);
}
public cos(): Decimal {
if (this.mag < 0) {
return Decimal.dOne;
}
if (this.layer === 0) {
return Decimal.fromNumber(Math.cos(this.sign * this.mag));
}
return FC_NN(0, 0, 0);
}
public tan(): this | Decimal {
if (this.mag < 0) {
return this;
}
if (this.layer === 0) {
return Decimal.fromNumber(Math.tan(this.sign * this.mag));
}
return FC_NN(0, 0, 0);
}
public asin(): this | Decimal {
if (this.mag < 0) {
return this;
}
if (this.layer === 0) {
return Decimal.fromNumber(Math.asin(this.sign * this.mag));
}
return FC_NN(Number.NaN, Number.NaN, Number.NaN);
}
public acos(): Decimal {
if (this.mag < 0) {
return Decimal.fromNumber(Math.acos(this.toNumber()));
}
if (this.layer === 0) {
return Decimal.fromNumber(Math.acos(this.sign * this.mag));
}
return FC_NN(Number.NaN, Number.NaN, Number.NaN);
}
public atan(): this | Decimal {
if (this.mag < 0) {
return this;
}
if (this.layer === 0) {
return Decimal.fromNumber(Math.atan(this.sign * this.mag));
}
return Decimal.fromNumber(Math.atan(this.sign * 1.8e308));
}
public sinh(): Decimal {
return this.exp().sub(this.negate().exp()).div(2);
}
public cosh(): Decimal {
return this.exp().add(this.negate().exp()).div(2);
}
public tanh(): Decimal {
return this.sinh().div(this.cosh());
}
public asinh(): Decimal {
return Decimal.ln(this.add(this.sqr().add(1).sqrt()));
}
public acosh(): Decimal {
return Decimal.ln(this.add(this.sqr().sub(1).sqrt()));
}
public atanh(): Decimal {
if (this.abs().gte(1)) {
return FC_NN(Number.NaN, Number.NaN, Number.NaN);
}
return Decimal.ln(this.add(1).div(Decimal.fromNumber(1).sub(this))).div(2);
}
/**
* Joke function from Realm Grinder
*/
public ascensionPenalty(ascensions: DecimalSource): Decimal {
if (ascensions === 0) {
return this;
}
return this.root(Decimal.pow(10, ascensions));
}
/**
* Joke function from Cookie Clicker. It's 'egg'
*/
public egg(): Decimal {
return this.add(9);
}
public lessThanOrEqualTo(other: DecimalSource): boolean {
return this.cmp(other) < 1;
}
public lessThan(other: DecimalSource): boolean {
return this.cmp(other) < 0;
}
public greaterThanOrEqualTo(other: DecimalSource): boolean {
return this.cmp(other) > -1;
}
public greaterThan(other: DecimalSource): boolean {
return this.cmp(other) > 0;
}
// return Decimal;
}
// Assign these after the Decimal is assigned because vitest had issues otherwise
// If we can figure out why, we can make these readonly properties instead
Decimal.dZero = FC_NN(0, 0, 0);
Decimal.dOne = FC_NN(1, 0, 1);
Decimal.dNegOne = FC_NN(-1, 0, 1);
Decimal.dTwo = FC_NN(1, 0, 2);
Decimal.dTen = FC_NN(1, 0, 10);
Decimal.dNaN = FC_NN(Number.NaN, Number.NaN, Number.NaN);
Decimal.dInf = FC_NN(1, Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY);
Decimal.dNegInf = FC_NN(-1, Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY);
Decimal.dNumberMax = FC(1, 0, Number.MAX_VALUE);
Decimal.dNumberMin = FC(1, 0, Number.MIN_VALUE);
// return Decimal;
// Optimise Decimal aliases.
// We can't do this optimisation before Decimal is assigned.
D = Decimal.fromValue_noAlloc;
FC = Decimal.fromComponents;
FC_NN = Decimal.fromComponents_noNormalize;
// eslint-disable-next-line @typescript-eslint/no-unused-vars
ME = Decimal.fromMantissaExponent;
// eslint-disable-next-line @typescript-eslint/no-unused-vars
ME_NN = Decimal.fromMantissaExponent_noNormalize;