Documented conversion.ts

This commit is contained in:
thepaperpilot 2022-05-01 19:13:41 -05:00
parent eb1d394f04
commit 17642b95a6

View file

@ -1,6 +1,7 @@
import { GenericLayer } from "game/layers";
import { Modifier } from "game/modifiers";
import Decimal, { DecimalSource } from "util/bignum";
import { WithRequired } from "util/common";
import {
Computable,
GetComputableTypeWithDefault,
@ -12,24 +13,78 @@ import { computed, isRef, Ref, unref } from "vue";
import { OptionsFunc, Replace, setDefault } from "./feature";
import { Resource } from "./resources/resource";
/**
* An object that configures a {@link conversion}.
*/
export interface ConversionOptions {
/**
* The scaling function that is used to determine the rate of conversion from one {@link resource} to the other.
*/
scaling: ScalingFunction;
/**
* How much of the output resource the conversion can currently convert for.
* Typically this will be set for you in a conversion constructor.
*/
currentGain?: Computable<DecimalSource>;
/**
* The absolute amount the output resource will be changed by.
* Typically this will be set for you in a conversion constructor.
* This will differ from {@link currentGain} in the cases where the conversion isn't just adding the converted amount to the output resource.
*/
actualGain?: Computable<DecimalSource>;
/**
* The amount of the input resource currently being required in order to produce the {@link currentGain}.
* That is, if it went below this value then {@link currentGain} would decrease.
* Typically this will be set for you in a conversion constructor.
*/
currentAt?: Computable<DecimalSource>;
/**
* The amount of the input resource required to make {@link currentGain} increase.
* Typically this will be set for you in a conversion constructor.
*/
nextAt?: Computable<DecimalSource>;
/**
* The input {@link resource} for this conversion.
*/
baseResource: Resource;
/**
* The output {@link resource} for this conversion. i.e. the resource being generated.
*/
gainResource: Resource;
/**
* Whether or not to cap the amount of the output resource gained by converting at 1.
*/
buyMax?: Computable<boolean>;
/**
* Whether or not to round up the cost to generate a given amount of the output resource.
*/
roundUpCost?: Computable<boolean>;
/**
* The function that performs the actual conversion from {@link baseResource} to {@link gainResource}.
* Typically this will be set for you in a conversion constructor.
*/
convert?: VoidFunction;
gainModifier?: Modifier;
/**
* An addition modifier that will be applied to the gain amounts.
* Must be reversible in order to correctly calculate {@link nextAt}.
* @see {@link createSequentialModifier} if you want to apply multiple modifiers.
*/
gainModifier?: WithRequired<Modifier, "revert">;
}
/**
* The properties that are added onto a processed {@link ConversionOptions} to create a {@link Conversion}.
*/
export interface BaseConversion {
/**
* The function that performs the actual conversion.
*/
convert: VoidFunction;
}
/**
* An object that converts one {@link resource} into another at a given rate.
*/
export type Conversion<T extends ConversionOptions> = Replace<
T & BaseConversion,
{
@ -42,6 +97,9 @@ export type Conversion<T extends ConversionOptions> = Replace<
}
>;
/**
* A type that matches any {@link conversion} object.
*/
export type GenericConversion = Replace<
Conversion<ConversionOptions>,
{
@ -54,6 +112,13 @@ export type GenericConversion = Replace<
}
>;
/**
* Lazily creates a conversion with the given options.
* You typically shouldn't use this function directly. Instead use one of the other conversion constructors, which will then call this.
* @param optionsFunc Conversion options.
* @see {@link createCumulativeConversion}.
* @see {@link createIndependentConversion}.
*/
export function createConversion<T extends ConversionOptions>(
optionsFunc: OptionsFunc<T, Conversion<T>, BaseConversion>
): Conversion<T> {
@ -117,14 +182,49 @@ export function createConversion<T extends ConversionOptions>(
});
}
export type ScalingFunction = {
/**
* A collection of functions that allow a conversion to scale the amount of resources gained based on the input resource.
* This typically shouldn't be created directly. Instead use one of the scaling function constructors.
* @see {@link createLinearScaling}.
* @see {@link createPolynomialScaling}.
*/
export interface ScalingFunction {
/**
* Calculates the amount of the output resource a conversion should be able to currently produce.
* This should be based off of `conversion.baseResource.value`.
* The conversion is responsible for applying the gainModifier, so this function should be un-modified.
* It does not need to be clamped or rounded.
*/
currentGain: (conversion: GenericConversion) => DecimalSource;
/**
* Calculates the amount of the input resource that is required for the current value of `conversion.currentGain`.
* Note that `conversion.currentGain` has been modified by `conversion.gainModifier`, so you will need to revert that as appropriate.
* The conversion is responsible for rounding up the amount as appropriate.
* The returned value should not be below 0.
*/
currentAt: (conversion: GenericConversion) => DecimalSource;
/**
* Calculates the amount of the input resource that would be required for the current value of `conversion.currentGain` to increase.
* Note that `conversion.currentGain` has been modified by `conversion.gainModifier`, so you will need to revert that as appropriate.
* The conversion is responsible for rounding up the amount as appropriate.
* The returned value should not be below 0.
*/
nextAt: (conversion: GenericConversion) => DecimalSource;
};
}
// Gain formula is (baseResource - base) * coefficient
// e.g. if base is 10 and coefficient is 0.5, 10 points makes 1 gain, 12 points is 2
/**
* Creates a scaling function based off the formula `(baseResource - base) * coefficient`.
* If the baseResource value is less than base then the currentGain will be 0.
* @param base The base variable in the scaling formula.
* @param coefficient The coefficient variable in the scaling formula.
* @example
* A scaling function created via `createLinearScaling(10, 0.5)` would produce the following values:
* | Base Resource | Current Gain |
* | ------------- | ------------ |
* | 10 | 1 |
* | 12 | 2 |
* | 20 | 6 |
*/
export function createLinearScaling(
base: DecimalSource | Ref<DecimalSource>,
coefficient: DecimalSource | Ref<DecimalSource>
@ -146,7 +246,7 @@ export function createLinearScaling(
current = conversion.gainModifier.revert(current);
}
current = Decimal.max(0, current);
return Decimal.times(current, unref(coefficient)).add(unref(base));
return Decimal.sub(current, 1).div(unref(coefficient)).add(unref(base));
},
nextAt(conversion) {
let next: DecimalSource = Decimal.add(unref(conversion.currentGain), 1);
@ -154,19 +254,34 @@ export function createLinearScaling(
next = conversion.gainModifier.revert(next);
}
next = Decimal.max(0, next);
return Decimal.times(next, unref(coefficient)).add(unref(base)).max(unref(base));
return Decimal.sub(next, 1).div(unref(coefficient)).add(unref(base)).max(unref(base));
}
};
}
// Gain formula is (baseResource / base) ^ exponent
// e.g. if exponent is 0.5 and base is 10, then having 10 points makes gain 1, and 40 points is 2
/**
* Creates a scaling function based off the formula `(baseResource / base) ^ exponent`.
* If the baseResource value is less than base then the currentGain will be 0.
* @param base The base variable in the scaling formula.
* @param exponent The exponent variable in the scaling formula.
* @example
* A scaling function created via `createLinearScaling(10, 0.5)` would produce the following values:
* | Base Resource | Current Gain |
* | ------------- | ------------ |
* | 10 | 1 |
* | 40 | 2 |
* | 250 | 5 |
*/
export function createPolynomialScaling(
base: DecimalSource | Ref<DecimalSource>,
exponent: DecimalSource | Ref<DecimalSource>
): ScalingFunction {
return {
currentGain(conversion) {
if (Decimal.lt(conversion.baseResource.value, unref(base))) {
return 0;
}
const gain = Decimal.div(conversion.baseResource.value, unref(base)).pow(
unref(exponent)
);
@ -195,12 +310,23 @@ export function createPolynomialScaling(
};
}
/**
* Creates a conversion that simply adds to the gainResource amount upon converting.
* This is similar to the behavior of "normal" layers in The Modding Tree.
* This is equivalent to just calling createConversion directly.
* @param optionsFunc Conversion options.
*/
export function createCumulativeConversion<S extends ConversionOptions>(
optionsFunc: OptionsFunc<S, Conversion<S>>
): Conversion<S> {
return createConversion(optionsFunc);
}
/**
* Creates a conversion that will replace the gainResource amount with the new amount upon converting.
* This is similar to the behavior of "static" layers in The Modding Tree.
* @param optionsFunc Converison options.
*/
export function createIndependentConversion<S extends ConversionOptions>(
optionsFunc: OptionsFunc<S, Conversion<S>>
): Conversion<S> {
@ -253,6 +379,14 @@ export function createIndependentConversion<S extends ConversionOptions>(
});
}
/**
* This will automatically increase the value of conversion.gainResource without lowering the value of the input resource.
* It will by default perform 100% of a conversion's currentGain per second.
* If you use a ref for the rate you can set it's value to 0 when passive generation should be disabled.
* @param layer The layer this passive generation will be associated with.
* @param conversion The conversion that will determine how much generation there is.
* @param rate A multiplier to multiply against the conversion's currentGain.
*/
export function setupPassiveGeneration(
layer: GenericLayer,
conversion: GenericConversion,
@ -269,7 +403,22 @@ export function setupPassiveGeneration(
});
}
function softcap(
/**
* Given a value, this function finds the amount above a certain value and raises it to a power.
* If the power is <1, this will effectively make the value scale slower after the cap.
* @param value The raw value.
* @param cap The value after which the softcap should be applied.
* @param power The power to raise value above the cap to.
* @example
* A softcap added via `addSoftcap(scaling, 100, 0.5)` would produce the following values:
* | Raw Value | Softcapped Value |
* | --------- | ---------------- |
* | 1 | 1 |
* | 100 | 100 |
* | 125 | 105 |
* | 200 | 110 |
*/
export function softcap(
value: DecimalSource,
cap: DecimalSource,
power: DecimalSource = 0.5
@ -281,6 +430,15 @@ function softcap(
}
}
/**
* Creates a scaling function based off an existing scaling function, with a softcap applied to it.
* The softcap will take any value above a certain value and raise it to a power.
* If the power is <1, this will effectively make the value scale slower after the cap.
* @param scaling The raw scaling function.
* @param cap The value after which the softcap should be applied.
* @param power The power to raise value about the cap to.
* @see {@link softcap}.
*/
export function addSoftcap(
scaling: ScalingFunction,
cap: ProcessedComputable<DecimalSource>,
@ -293,6 +451,12 @@ export function addSoftcap(
};
}
/**
* Creates a scaling function off an existing function, with a hardcap applied to it.
* The harcap will ensure that the currentGain will stop at a given cap.
* @param scaling The raw scaling function.
* @param cap The maximum value the scaling function can output.
*/
export function addHardcap(
scaling: ScalingFunction,
cap: ProcessedComputable<DecimalSource>